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1 Summary

The fifth USEMO was held on October 21 – 22, 2023. A total of 70 students submitted
at least one paper.

Although not as brutal as last year, this was still a challenging exam. About two-thirds
of the students were able to solve at least one problem. Happily, every problem in the
exam was solved by at least two students, although problems 2, 3, 5, 6 only had a
single-digit number of solves each. (Amusingly, two students solved the final problem
6 but no other problems.) This makes the showings of the top few students extremely
impressive.

§1.1 Thanks
I am once again grateful to many individuals who helped make this competition possible.

§1.1a Proposers of problems
I thank Ankan Bhattacharya, Atharva Sathe, Azat Madimarov, Holden Mui, Kaixin
Wang, Karthik Vedula, Kornpholkrit Weraarchakul, Krishna Pothapragada, Maxim Li,
Nikolai Beluhov, Oleg Kryzhanovsky, Qiao Sun, Sanjana Das, Sathyaram Basker, Serena
An, Siraphop Khawplad, Xiaoyu Chen, Zeyu Yang for contributing 36 problem proposals.

§1.1b Reviewers
I thank Andrew Gu, Ankan Bhattacharya, Maxim Li, Nikolai Beluhov, Oleg Kryzhanovsky,
William Yue for reviewing the proposed problems.

§1.1c Graders
Thanks to everyone who graded at least one paper: Aleksij Tasikj, Alex Chui, Ana
Boiangiu, Anurag Singh, Arianée, Atul Shatavart Nadig, Carlos Villagordo Espinosa,
Cerlat Marius, Dan, Danielle Wang, Demira Nedeva, Elizabeth Lau, Galin Milenov
Totev, Hao-Yu Gan, Haruka Kimura, Helio Ng, Hu Man Keat, Joao Vitor Carvalho
Almeida, Joshua Im, Kaixin Wang, Kanav Talwar, Kevin Liu, Kevin Shi, Kyan Cheung,
Liam Celinski, Lincoln Liu, Luis André Villán Gabriel, Max Mei, Mikel Perez de Gra-
cia, Miroslav Marinov, Muhammad Alhafi, Novak Despotović, Orestis Lignos, Paixiao
Seeluangsawat, Petko Lazarov, Rushil Mathur, Shikhar Sehgal, Shreeansh Hota, Szymon
Tobiasz, Tache David Stefan, Tanupat Trakulthongchai, Teya Chobanova, Will Ren.

§1.1d Other supporters
I would like to thank the Art of Problem Solving for offering the software and platform
for us to run the competition. Special thanks to Christie Harrison, Rebecca Sodervick,
Deven Ware, and Jo Welsh who collaborated with me.
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2 Results

If you won one of the seven awards, please reach out to usemo@evanchen.cc to claim
your prize!

§2.1 Top Scores
Congratulations to the top three scorers, who win the right to propose problems to future
instances of USEMO.

1st place Linus Tang (score 36)

2nd place Hannah Fox (score 30)

3rd place Henrick Rabinovitz (score 28)

§2.2 Special awards
See the Rules for a description of how these are awarded. (Note in particular that
students already in the top three above aren’t considered for special awards.)

For the purposes of awarding monetary prizes, ties are broken more or less arbitrarily
by considering the presentation of elegance of solutions (which is obviously subjective).
When this occurs, the names of tied students are noted as well.

Youth prize Alexander Wang

Top female Vivian Loh

Top day 1 Aprameya Tripathy

Top day 2 Qiao Zhang

§2.3 Honorable mentions
This year we award Honorable Mention to anyone scoring at least 16 points (who is not
in the top three already). The HMs are listed below in alphabetical order.

Alexander Wang

Allen Wang

Aprameya Tripathy

Carlos Rodriguez

Feodor Yevtushenko

Jason Mao

Qiao Zhang

Zongshu Wu
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§2.4 Distinction
The Distinction award is awarded for either scoring at least 14 points or in the top 25 of
scores, whichever is more inclusive. This year, the 25th place student scored 8 points, so
Distinction awards recognize any student with at least 8 points. The Distinction awards
are listed below in alphabetical order.

Aditya Pahuja

Ahmad Alkhalawi

Angela Liu

Ashvin Sinha

Benny Wang

Evan Fan

Grant Blitz

Jiahe Liu

Jordan Lefkowitz

Leo Yu

Mingyue Yang

Neal Yan

Oron Wang

Ritwin Narra

Rohan Das

Shruti Arun

Srinivas Arun

Vivian Loh

Wilbert Chu
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3 Solutions and marking schemes

§3.1 USEMO 1 — proposed by Oleg Kryzhanovsky

Problem statement

A positive integer n is called beautiful if, for every integer 4 ≤ b ≤ 10000, the base-b
representation of n contains the consecutive digits 2, 0, 2, 3 (in this order, from left
to right). Determine whether the set of all beautiful integers is finite.

§3.1a Solution
We show there are infinitely many beautiful integers. Here are three different approaches.

¶ One constructive approach. We will construct an increasing sequence of positive
integers

N4 < N5 < N6 < . . .

such that for every k = 4, 5, . . . , the number Nk contains 2023b in every base 4 ≤ b ≤ k.
This will solve the problem because N10000, N10001, . . . will be the requested infinite set.

For the base case, take N4 = 20234.
For the inductive step, here is one of many valid recipes. We are going to select

Nk = Nk−1 + c · (k`)e

where the ingredients c, `, e are selected to satisfy:

• ` is the product of all primes at most k which are relatively prime to k (in particular,
gcd(k, `) = 1);

• e is large enough that for each b = 4, 5, . . . , k, the largest power of b dividing (k`)e

is greater than b ·Nk−1;

• c is chosen to satisfy the modular congruence

c · `e ≡ 2k3 + 0k2 + 2k + 3 (mod k4)

which is possible since gcd(k4, `e) = 1.

With these ingredients, for all the smaller bases 4, 5, . . . , k − 1, the ending of Nk in
base-b is the same as in Nk−1 (since (k`)e is a multiple of a large enough power of b). On
the other hand, we’ve embedded 2023k into the base-k representation of Nk−1, because
the coefficients of ke+3, ke+2, ke+1, ke in the base-k representation are exactly 2, 0, 2, 3.

Remark. The essential difficulty in this approach arises from the fact that different bases may
share overlapping prime factors, so the Chinese Remainder Theorem does not immediately
apply. (Indeed, the solution above does not use the Chinese remainder theorem at all.) To
give a concrete example, if N is an integer whose base-6 representation contains a specific
substring, then there are several restrictions on what possible base-9 representations it could
have, which are serious enough to limit the control a student has, but not strong enough to
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actually determine any of the digits. That’s why in the inductive proof, there is sort of a
“critical step” in which the common prime factors are factored out via (k`)e, after which c
is chosen via modular inverses once the common prime factors have been factored out.

¶ An indirect inductive approach. The goal of this approach is to construct a system
of congruences of the form

N ≡ 20234 · 4e4 + t4 (mod 4e4+4)

N ≡ 20235 · 5e5 + t5 (mod 5e5+4)

N ≡ 20236 · 6e6 + t6 (mod 6e6+4)

...
N ≡ 202310000 · 10000e10000 + t10000 (mod 10000e10000+4)

which has at least one simultaneous solution in N , and where 0 ≤ tb < beb . The equation
involving beb+4 will automatically ensure N has the desired substring 2023b, so we concern
ourselves only with ensuring the system of equations is consistent.

In order to do this, we will need a more general version of the Chinese remainder
theorem to moduli that are not coprime:

Theorem (Generalized Chinese remainder theorem)
Fix integers a, b, m, n with m,n > 0. The equations

x ≡ a (mod m)

x ≡ b (mod n)

have a simultaneous solution if and only if a ≡ b (mod gcd(m,n)). Moreover, if
there is a solution, that solution is unique modulo lcm(m,n).

Remark. The usual Chinese remainder theorem is the case where gcd(m,n) = 1, in which
case a ≡ b (mod 1) is always true.

We now proceed by induction, selecting the pairs (t4, e4), (t5, e5), . . . in order. For the
base case, it is enough to take t4 = e4 = 0.

Now suppose we have selected pairs up to (tb−1, eb−1) for some b and it is time to select
(tb, eb). The inductive hypothesis means that the previous equations up to base b− 1 can
be collated into a single equivalent equation

N ≡ C (mod L) where L := lcm
(
4e4+4, 5e5+4, . . . , (b− 1)eb+1+4

)
.

The critical observation is that as long as eb is selected large enough so that

beb ≥ gcd(L, beb+4)

then at least one of the choices of tb will satisfy

2023b · beb + tb ≡ C (mod gcd(L, beb+4))

which is the compatibility condition needed to ensure

N ≡ 2023b · beb + tb (mod beb+4)

can be added to the preceding equations. Since this is obviously possible (by taking
eb > logb L) the induction is complete.
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¶ Density approach (outline). It’s enough to prove the following claim:

Claim — Fix any integer b ≥ 4. The arithmetic density of nonnegative integers
whose base-b representation does not contain 2023b as a contiguous substring is zero.

Proof. Think about just the last 4n digits in base-b, in n groups of 4. For every complete
residue class modulo b4n, the number of base-b numbers that don’t have 2023b in their
base-b representation is at most (b4 − 1)n.

Consequently, if we have a threshold N , the number of 2023b-avoiding numbers in
{0, 1, . . . , N} is bounded above by

(b4 − 1)n ·
⌊
N

b4n

⌋
+ b4n

and so the density of 2023b-avoiding numbers, for large N , is at most

(b4 − 1)n

b4n
=

(
1− 1

b4

)n

.

Since this statement has to hold for any n ≥ 1, the density must be zero.

Thus, it follows that “most” positive integers are beautiful!

§3.1b Marking scheme
Marking scheme for inductions and constructions (common approach)

The following remark from the solution packet is key to understanding the rubric in what
follows:

The essential difficulty in this problem arises from the fact that different bases
may share overlapping prime factors, so the Chinese Remainder Theorem
does not immediately apply. (Indeed, the solution above does not use the
Chinese remainder theorem at all.) To give a concrete example, if N is an
integer whose base-6 representation contains a specific substring, then there
are several restrictions on what possible base-9 representations it could have,
which are serious enough to limit the control a student has, but not strong
enough to actually determine any of the digits. That’s why in the inductive
proof, there is sort of a “critical step” in which the common prime factors are
factored out via (k`)e, after which c is chosen via modular inverses once the
common prime factors have been factored out.

In short, a solution is considered 7− once it can achieve this critical step where, to deal
with overlapping prime factors, a large set of common primes are factored out so that a
suitable modular inverse can be used in order to complete the proof.

To achieve this benchmark, these steps must be written in sufficient detail to be checked;
they should be deduced using explicit equations specifying the necessary thresholds and
moduli. For example the official solution reads:

We are going to select Nk = Nk−1 + c · (k`)e where the ingredients c, `, e
are selected to satisfy:

• ` is the product of all primes at most k which are relatively prime to k
(in particular, gcd(k, `) = 1);
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• e is large enough that for each b = 4, 5, . . . , k, the largest power of b
dividing (k`)e is greater than b ·Nk−1;

• c is chosen to satisfy the modular congruence

c · `e ≡ 2k3 + 0k2 + 2k + 3 (mod k4)

which is possible since gcd(k4, `e) = 1.
Merely claiming there is some congruence of some sort is not sufficient to pass the
benchmark.

For solutions that fail to achieve this benchmark, the following partial credits are
available but not additive:

• 0 points for yes/no answer alone.

• 0 points for just mentioning induction.

• 0 points for base cases like b = 4.

• 0 points for a solution that only works on coprime moduli. This includes, e.g.
showing there is a number which has 2023b for every base 4 ≤ b ≤ 2023 which is
the power of a prime (that is, b ∈ {4, 5, 7, 8, 9, 11, 13, . . . , 2011}).

• 1 point for showing that the existence of a single beautiful number implies the
existence of infinitely many, e.g. by adding large powers of 2023!.

• 1 point for a serious induction attempt or construction but which botches the
main difficulty mentioned above.
In practice, most students who obtain this item will probably have obtained the
previous item (possibly implicitly), so it is not particularly relevant.

• 2 points for a solution that additionally has the idea in the indirect construction
solution of ensuring compatibility by picking a certain integer parameter ti ∈
{0, 1, . . . , bk − 1} in a consecutive range for a sufficiently large k.

Solutions that pass this benchmark earn:
• 7 points if they are completely correct.

• 6 points for a minor error such as
– completely omitting the base case of the induction;
– using an integer parameter which is not large enough as stated but could easily

be changed to be large enough.

• 5 points for a more serious but non-central flaw in one of the steps of an inductive
approach.

The distinction between 5 and 6 will be done more closely by the problem captain.

Marking scheme for arithmetic density approach

• 0 points for just conjecturing the arithmetic density of beautiful numbers is 1

• 4 points for showing that the number of residue classes modulo b4n that don’t
have 2023b as a contiguous substring is at most (b4 − 1)n.

• 6 points for complete solution modulo minor errors.

• 7 points for complete solution.

9



Evan Chen — 18 February 2024 The 5th US Ersatz Math Olympiad

§3.2 USEMO 2 — proposed by Holden Mui

Problem statement

Each point in the plane is labeled with a real number. Show that there exist two
distinct points P and Q whose labels differ by less than the distance from P to Q.

§3.2a Solution
Let f : R2 → R be the labeling, and suppose for contradiction the difference in labels for
any points P,Q ∈ R2 is at least their distance.

Claim — Let I be a closed interval of length 1. For any ε > 0, the pre-image

f−1(I) :=
{
x ∈ R2 | f(x) ∈ I

}
can be contained inside a set of squares whose total area is at most ε.

Proof. Let n ≥ 1. Divide I into n closed intervals of length 1
n . The problem condition

implies that the pre-image of each sub-interval is contained inside a square of side length
at most 2

n , and hence with area at most
(
2
n

)2
= 4

n2 . The total area of the square is thus
bounded by n · 4

n2 = 4
n . By taking n large enough that ε > 4/n, we’re done.

Divide the codomain R into closed intervals

I1 = [0, 1]

I2 = [−1, 0]

I3 = [1, 2]

I4 = [−2,−1]

I5 = [2, 3]

I6 = [−3,−2]

...

By the claim, the pre-image f−1(Ik) could be contained inside squares whose total area
is at most, say, 10−k. So the entire pre-image f−1(R) could be contained inside squares
whose total area is at most

∑
k≥1 10

−k = 1
9 , which is finite. But this is absurd, since

f−1(R) = R2.

Remark (Generalization of the problem). One can imagine the same problem with the
target condition modified to

|f(P )− f(Q)| < |PQ|c

for a general c > 0; the present problem is c = 1.
For 0 < c < 2, the above proof works equally well. For c = 2, we provide a construction

where the statement is no longer true.
It suffices to find a function f : C → R such that

|f(z2)− f(z1)| > |z2 − z1|2

for all complex numbers z1 and z2.
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Let g(z) : [0, 1]+ [0, 1]i → [0, 1] be the inverse Hilbert curve. The preimage of any interval[
n
22k

, n+1
22k

]
is a square of side length 1

2k
that is adjacent to the preimage of

[
n+1
22k

, n+2
22k

]
. This

means the preimage of any length ` interval is contained in a width 4
√
` square. This means

8
√
|g(z2)− g(z1)| > |z2 − z1|,

implying that some sufficiently large multiple of g(z), say h(z), satisfies the desired inequality
over its domain.

To extend the domain of this solution to all complex numbers, partition the complex
plane into countably many unit squares, copy h(z) onto each unit square, and space the
images of each unit square sufficiently far apart on the real number line.

§3.2b Marking scheme
For all solutions, the following are not awarded marks:

• Proving the statement for all continuous labellings.

• Assuming there exists a labelling f : R2 → R such that |f(x)− f(y)| ≥ |x− y| for
the sake of contradiction.

• Proving f is injective.

For solutions similar to the official solution, the following items are available but not
additive:

• 1 point for examining the pre-image of an interval.

• 1 point for examining a 2-dimensional set (as opposed to a lattice or a countable
number of lines) and mentioning area.

• 2 points for proving f−1 ([a, b]) is contained in a set of area C(b − a)2 for some
constant C. For reference, this set will (usually) be either a square or a disk.

• 5 points for proving the above quadratic bound and introducing a harmonic
covering of R.

• 5 points for proving f−1 ([a, b]) is contained in a set of area ε for any ε > 0.

• 7 points for a complete solution.

Solutions using the advanced theory of Lipschitz functions are scored as follows, with
all marks being additive.

• +1 point for showing f−1 is 1-Lipschitz and surjective on its domain S.

• +2 points for a suitable extension of f−1 to g : R2 → R2. Graders should look out
for implicit assumptions that S is composed of a finite number of intervals/dense
or not dense/Borel/Lebesgue-measurable/e.t.c.

• +1 point for covering the preimage of f−1(R) with a countable number of discs
with finite area, awarded only if the contestant hits the above 2 points.

For all solutions which are incomplete with errors, the following deductions apply and
are all additive:

• -1 point for only partitioning R+ into intervals.

• -1 point for mentions of the “area” of f−1 ([a, b]) (instead of that of a superset).
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§3.3 USEMO 3 — proposed by Maxim Li

Problem statement

Canmoo is trying to do constructions, but doesn’t have a ruler or compass. Instead,
Canmoo has a device that, given four distinct points A, B, C, P in the plane,
will mark the isogonal conjugate of P with respect to triangle ABC, if it exists.
Show that if two points are marked on the plane, then Canmoo can construct their
midpoint using this device, a pencil for marking additional points, and no other
tools.

(Recall that the isogonal conjugate of P with respect to triangle ABC is the point
Q such that lines AP and AQ are reflections around the bisector of ∠BAC, lines
BP and BQ are reflections around the bisector of ∠CBA, lines CP and CQ are
reflections around the bisector of ∠ACB. Additional points marked by the pencil
can be assumed to be in general position, meaning they don’t lie on any line through
two existing points or any circle through three existing points.)

§3.3a Solution
We assume Canmoo can mark points in arbitrarily general position.

We first prove two claims showing that reflection around a point is possible. We will
only use the second claim in what proceeds (so with the second claim proven, we can
forget about the first one.)

P

B C

XY

Z

A

B C

D

F

X

Y

Claim — Given any three points X, B, C, Canmoo can construct the reflection of
X over BC.

Proof. Pick another point P , and let Y be the isogonal conjugate of X in 4PBC, and
Z the isogonal conjugate of X in 4Y BC. Then

]CBX = ]Y BP = ]ZBC, and ]BCX = ]Y CP = ]ZCB.

Thus, Z is the reflection of X over BC.

12
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Claim — Given any two points A and B, Canmoo can reflect A over B.

Proof. Pick another point C. Let D and F denote the reflections of A and C over BC
and AB. Then reflect D over CF to X, and B over DX to Y , so that BY ⊥ AB. Finally,
the reflection of A over BY is the reflection of A over B.

Claim — Given any three points A, B, C, Canmoo can construct the point P such
that AP ‖ BC and ∠APC = 90◦.

Proof. WLOG assume ∠B 6= 90◦. (If not, replace B with its reflection over C.) Reflect
A over B and C to get B′ and C ′, respectively. Reflect B′ over C to get S, so AB′C ′S
is a parallelogram which is not a rectangle. Since AP ‖ B′C ′, the isogonal of AP with
respect to ∠B′AC ′ is the tangent to the circumcenter of 4ABC at A; and hence the
isogonal conjugate of S is T := AA ∩ C ′C ′, the intersection of the tangents at A and C ′,
as shown below.

A

B′
C ′

B
C

S

T

P

Now take the isogonal conjugate of T with respect to 4ABC. It still lies on line AS, but
because ∠TCA = 90◦ we have ]PCB = 90◦ too, hence ]APC = 90◦. So P is exactly
the point desired.

Claim — Given any three points A, B, C, Canmoo can construct the foot from A
to BC.

Proof. Construct the point P in the third claim, and WLOG assume none of the angles
in the problem are 90◦ (otherwise, reflect B or C over each other), so P is distinct from
A. Then apply the construction again to BAP to get the desired foot.

We are ready to tackle the main construction. Let B and C be the initial two given
points, and pick a third point A and assume ∠A 6= 90◦. As in the proof of the third
claim, reflect A over B, C to get B′ and C ′, and reflect B′ over C to S.

Then let D be the reflection of S across C ′; hence AB′DC ′ is a parallelogram. The
isogonal conjugate of D with respect to 4AB′C ′ is therefore the intersection X of the
tangents to (AB′C ′) at B′ and C ′. Then taking the foot from X to B′C ′ gives the foot
from M to B′C ′.

13
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A

B′
C ′

B C

S

D
X

M Y

N

In particular, ABMC is a parallelogram, and so again we may take the isogonal
conjugate of M with respect to 4ABC to obtain the point Y = BB ∩ CC which is the
intersection of the tangents to B and C at (ABC). Finally, taking the foot from Y to
BC gives the desired midpoint.

§3.3b Marking scheme
For the most part, solutions could be read on a case-by-case basis, because not many so-
lutions have nontrivial progress. We stanardize the following non-additive benchmarks:

• 1 point for showing X can be reflected over Y Z.

• 0 points for showing X can be reflected over a point Y .

• 3 points for being able to obtain the feet of the altitudes in a triangle

• 3 points for being able to obtain the circumcenters of triangles.
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§3.4 USEMO 4 — proposed by Ankan Bhattacharya

Problem statement

Let ABC be an acute triangle with orthocenter H. Points A1, B1, C1 are chosen in
the interiors of sides BC, CA, AB, respectively, such that 4A1B1C1 has orthocenter
H. Define A2 = AH ∩B1C1, B2 = BH ∩ C1A1, and C2 = CH ∩A1B1.

Prove that triangle A2B2C2 has orthocenter H.

§3.4a Solution
We present four solutions.

¶ Power of a point solution, by Nikolai Beluhov. In this solution, all lengths are signed.
Let 4DEF be the orthic triangle of 4ABC, and 4D1E1F1 be the orthic triangle of
4A1B1C1. We define two common quantities, through power of a point:

k := HA ·HD = HB ·HE = HC ·HF.

k1 := HA1 ·HD1 = HB1 ·HE1 = HC1 ·HF1.

A

B CA1

B1

C1

A2

H

D

D1

Because quadrilateral A2D1DA1 is concyclic (with circumdiameter A1A2), by power
of a point, we get

HA2 ·HD = HD1 ·HA1 = k1

=⇒ HA2 =
k1
HD

=
k1
k

·HA.

Since k1/k is fixed, a symmetric argument now gives

HA2

HA
=

HB2

HB
=

HC2

HC
=

k1
k
.

Therefore, H is the center of a homothety mapping 4A2B2C2 to 4ABC. In particular,
it is also the orthocenter of 4A2B2C2.
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¶ Author’s ratio-based solution. We are going to prove:

Claim — We have B2C2 ‖ BC.

Proof. Refer to the diagram below.
A

B CA1

B1

C1

A2

B2

C2

H

Note that

C1A2

A2B1
=

[AC1H]

[AB1H]
=

AC1 · d(H,AB)

AB1 · d(H,AC)

=
AC1/HC

AB1/HB
=

HB

HC
· sin∠AB1C1

sin∠AC1B1

=
HB

HC
· sin∠BHA1

sin∠CHA1
=

[HBA1]

[HCA1]
=

BA1

A1C
.

Similarly, A1B2
B2C1

= CB1
B1A

and B1C2
C2A1

= AC1
C1B

. Hence,

[BB2C] = [BC1C] · B2A1

C1A1
= [BAC] · B2A1

C1A1
· C1B

AB
= [ABC] · B1C

AC
· C1B

AB
.

Similarly, [BC2C] also equals this quantity, so B2C2 ‖ BC and A2H ⊥ B2C2.

Repeating this we see that H is the orthocenter of 4A2B2C2, as wanted.

Remark. In the first equality chain, we obtained

[AC1H] · [CA1H] = [AB1H] · [BA1H].

Similarly, [BC1H] · [CB1H] also equals this quantity, and so we see that

sin∠BHC1 · sin∠CHB1

AH ·A1H
=

sin∠CHA1 · sin∠AHC1

BH ·B1H
=

sin∠AHB1 · sin∠BHA1

CH · C1H
.

Intuitively, this result is symmetric under swapping 4ABC and 4A1B1C1, and doesn’t
depend upon 4A1B1C1 being inscribed in 4ABC, in the sense that scaling 4ABC or
4A1B1C1 by any factor (with center H) preserves this property. Thus, this offers an
intuitive explanation for why “swapping” the triangles preserves the common orthocenter.

It might be possible to adapt this into a phantom-point approach to directly settle the
problem, but I don’t see how to do that.
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¶ Alternative finish to first solution by inversion. Define D, D1, E, E1, F and
F1 as in the first solution. As before, the quadrilateral A2D1DA1 is concyclic (with
circumdiameter A1A2).

Now, rather than using power of a point, consider the negative inversion with center H
and radius

√
HA1 ·HD. Since A2D1DA1 was cyclic and similarly, this inversion maps

E to B2 and F to C2. Hence the circle (EHF ) maps to the line B2C2.

A

B CA1

B1

C1

A2

B2 C2

H

D

D1

E

F

But the circle (EHF ) is symmetric with respect to line DH (the center of the circle is
the midpoint of AH), so the circle (EHF ) must map to a line perpendicular to DH. It
follows that B2C2 ⊥ DH, or that A2H ⊥ B2C2, as needed.

¶ Alternative finish to first solution using Reim’s theorem. Refer to the preceding
figure. From the cyclic quadrilaterals A2D1DA1 and similar in the first solution we also
have

HC2 ·HF = HC1 ·HF1 = HB1 ·HE1 = HB2 ·HE.

From this it follows that B2C2EF is cyclic.
We also know BCEF is cyclic and hence by Reim’s Theorem we get that B2C2 ‖ BC,

which implies the result.

§3.4b Marking scheme
General rules:

• As usual, incomplete computational approaches earn partial credits only based on
the amount of synthetic progress which is made.

• No points are awarded for just drawing a diagram or simple observations.

• No points are deducted for configuration issues (such as not using directed angles)
and minor typos.

• If the student has approaches from more than one of the solutions, they get the
maximum of all possible markings.

Items worth zero points

0 points for stating the problem is equivalent to prove that AB ‖ A2B2, or that ABC
and A2B2C2 are homothetic with center H.
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Power of a point solution, by Nikolai Beluhov

The following partial items are available and are additive:

(a) +1 point Proving that A1, D, A2 and D1 lie on a circle.

(b) +1 point Showing it is sufficient to prove HA2
HA is constant (or HA2

HA = HB2
HB = HC2

HC ,
or anything else identical).

Author’s ratio-based solution

The following partial items are available and are additive:

(a) +2 points Proving that C1A2

A2B1
=

BA1

A1C
.

(b) +1 point Showing it is sufficient to prove [BB2C] = [BC2B] (or that the distances
from B2 and C2 to BC are equal).

Inversion (third solution)

The following partial items are available and are additive, though note that altogether
they form a complete solution:

(a) +1 point Proving that A1, D, A2 and D1 lie on a circle.

(b) +1 point Stating that the line DH and the circle (EHF ) are orthogonal (or that
the center of (EHF ) lies on DH).

(c) +1 point Reducing the problem (e.g. by inversion) to showing that the line DH
and the circle (EHF ) are orthogonal- (or that the center of (EHF ) lies on DH).

Angle chase with power of a point (fourth solution)

The following partial items are available, but only (a) and (b) are additive. Note that
altogether (b) and (c) form a complete solution.

(a) 1 point Proving that A1, D, A2 and D1 lie on a circle.

(b) 1 point Showing it is sufficient to prove that B2, C2, E and F lie on a circle.

(c) 2 points Proving that B2, C2, E and F lie on a circle.

Any complete solution is worth 7 points.
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§3.5 USEMO 5 — proposed by Nikolai Beluhov

Problem statement

Let n ≥ 2 be an integer. A cube of size n× n× n is dissected into n3 unit cubes. A
nonzero real number is written at the center of each unit cube so that the sum of
the n2 numbers in each slab of size 1× n× n, n× 1× n, or n× n× 1 equals zero.
(There are a total of 3n such slabs, forming three groups of n slabs each such that
slabs in the same group are parallel and slabs in different groups are perpendicular.)

Could it happen that some plane in three-dimensional space separates the positive
and the negative written numbers? (The plane should not pass through any of the
numbers.)

§3.5a Solution
We show this can never happen.

Suppose, for the sake of contradiction, that such a plane α did exist. Let Oxyz be a
Cartesian coordinate system whose origin O lies in α and whose axes are parallel to the
edges of our cube. Let the equation of α in this coordinate system be ax+ by + cz = 0.
Without loss of generality, all positive written numbers lie in the half-space ax+by+cz > 0
relative to α and all negative written numbers lie in the half-space ax + by + cz < 0
relative to α.

For all i ∈ {1, 2, . . . , n3}, let ri be the number written at point (xi, yi, zi). Then for all
i we have that (axi + byi + czi)ri > 0.

Therefore,

0 = a · 0 + b · 0 + c · 0

=
∑
x

ax ·

( ∑
i:xi=x

ri

)
+
∑
y

by ·

 ∑
i:yi=y

ri

+
∑
z

cz ·

( ∑
i:zi=z

ri

)

=
∑
i

axiri +
∑
i

byiri +
∑
i

cziri

=
∑
i

(axi + byi + czi)ri

> 0.

We have arrived at a contradiction. The solution is complete.

Remark. The so-called Farkas lemma guarantees that if there wasn’t a valid labeling, then
we can combine the given inequalities to obtain a contradiction; therefore there is a sense in
which an inequality-based solution like the one above is a priori promised to exist if the
answer is no.

Remark (Neil Kolekar). More generally, if P , Q, R are nonconstant polynomials with real
coefficients, then from 0 =

∑
i:xi=x ri being true for each x (and similarly), we should have

0 =
∑
x

P (x) ·

( ∑
i:xi=x

ri

)
+
∑
y

Q(y) ·

 ∑
i:yi=y

ri

+
∑
z

R(z) ·

( ∑
i:zi=z

ri

)
.
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This means the same proof would work in general when the hyperplanes ax+ by + cz = 0
are replaced by more general surfaces of the form

P (x) +Q(y) +R(z) = 0.

§3.5b Marking scheme
In what follows, we let f(x, y, z) be the number written at (x, y, z) with 1 ≤ x, y, z ≤ n.
Also let the required plane be ax+ by + cz − d = 0.

Partial items for 0+ solutions

The following partial items apply for incomplete solutions and are additive.

• 0 points for claiming the answer

• 0 points for making the false claim that a plane cannot pass through all slabs

• 0 points for solving the problem for n = 2 or n = 3

• +2 points for considering an expression of the form∑
xf(x, y, z)

and showing that it is equal to zero.

• +2 points for considering the product (ax+ by + cz − d)f(x, y, z) or something
similar

Complete solutions

In case of a complete solution:

• No deduction for not explicitly considering at most one of the following cases:
1. f(x, y, z) and ax+ by + cz − d have the same sign
2. f(x, y, z) and ax+ by + cz − d have opposite sign
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§3.6 USEMO 6 — proposed by Kaixin Wang

Problem statement

Let n ≥ 2 be a fixed integer.

(a) Determine the largest positive integer m (in terms of n) such that there exist
complex numbers r1, . . . , rn, not all zero, for which

n∏
k=1

(rk + 1) =

n∏
k=1

(r2k + 1) = · · · =
n∏

k=1

(rmk + 1) = 1.

(b) For this value of m, find all possible values of

n∏
k=1

(rm+1
k + 1).

§3.6a Solution
For part (a) the answer is m = 2n − 2; for part (b) the answer is 2n.

¶ Construction for (a). For m = 2n − 2, fix ω := exp( 2πi
2n−1) and set

rj = ω2j j = 1, 2, . . . ,m = 2n − 2.

We can expand to see that the
n∏

k=1

(rjk + 1) =
2n−1∑
j=0

ωj = 1, j = 1, 2, . . . , 2n − 2.

¶ Bound for (a). It remains to show when m = 2n − 1 we must have r1 = · · · = rn = 0.
For each nonempty subset S of {1, . . . , n}, define

ΠS :=
∏
k∈S

rk.

Then the problem condition, when expanded, states that

0 = −1 +

n∏
k=1

(rjk + 1) =
∑

∅6=S⊆{1,...,n}

Πj
S j = 1, 2, . . . , 2n − 1.

But view the ΠS as 2n − 1 variables. Then the first 2n − 1 power sums of the ΠS all
vanish, and hence (say, by Newton sums) it follows that every ΠS must be zero. In
particular, all the variables are zero as well.

¶ Proof for (b). Fix m = 2n − 2 and

ω := exp
(

2πi

2n − 1

)
.

We are going to prove that:
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Claim — Every ri is a power of ω.

Proof. If we apply Newton sums as we did before, with the identity

0 = −1 +

n∏
k=1

(rjk + 1) =
∑

∅6=S⊆{1,...,n}

Πj
S j = 1, 2, . . . , 2n − 1.

then we get that all the elementary symmetric polynomials in ΠS vanish, except for the
last one. In other words, the polynomial identity

X2n−1 − c =
∏

∅6=S⊆{1,...,n}

(X −ΠS).

should hold for some c. We saw already (in (a)) that if c = 0 then ri = 0 for all i, so
assume c 6= 0, and that ri 6= 0 for all i.

Let λ be any complex (2n − 1)th root of c. Then the factorization of the left-hand
polynomial over C is given exactly by

X2n−1 − c =

2n−2∏
j=0

(
X − λωj

)
.

Hence, we have the equality of unordered sets{
ΠS | ∅ 6= S ⊆ {1, . . . , n}

}
=
{
λωj | 0 ≤ j ≤ 2n − 2

}
.

In particular,

r1 =
r1r2
r2

=
Π{1,2}

Π{2}
=

λωn12

λωn2
= ωn12−n2

for some integers n12 and n2 (whose values are unimportant); so r1 is a (2n − 1)th root
of unity, and similarly so is every ri.

Hence
n∏

i=1

(rmi + 1) =

n∏
i=1

(
r2

n−1
i + 1

)
=

n∏
i=1

(1 + 1) = 2n

is the only possible value of the product requested in (b).

Remark. An interesting problem is to characterize all (r1, . . . , rn). The author has not
solved that yet.

§3.6b Marking scheme
Part (a) will be graded out of 5 points and part (b) will be graded out of 2 points. The
scores of the two parts will be added for the final score out of 7.
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Scoring for (a)

For incomplete solutions, the following items are available but not additive.

• 1 point for the correct answer of m = 2n − 2 in part (a)

• 0 points for expanding the product and rewriting it as a sum.

• 2 points for expanding the product and rewriting it as a sum, using Newton sums
or Vandermonde Determinant to argue that the answer is at most 2n − 2.

• 2 points For a correct construction and answer.

• 5 points For completely solving part (a).

For complete solutions, the following deductions apply, and are additive.

• -1 points for wrong answer.

• -1 points For another mistake.

Scoring for (b)

• 1 point for correct answer

• 2 points for correct solution.
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4 Statistics

§4.1 Summary of scores for USEMO 2023
N 70
µ 8.94
σ 7.96

1st Q 2
Median 7

3rd Q 14

Max 36
Top 3 28

Top 12 15

§4.2 Problem statistics for USEMO 2023

P1 P2 P3 P4 P5 P6
0 15 59 53 37 65 62

1 14 3 15 3 0 5

2 2 2 0 0 0 0

3 1 0 0 0 0 0

4 0 0 0 0 0 0

5 4 0 0 0 0 0

6 2 0 0 1 0 2

7 32 6 2 29 5 1

Avg 3.96 0.70 0.41 3.03 0.50 0.34

QM 5.03 2.09 1.27 4.57 1.87 1.34
#5+ 38 6 2 30 5 3
%5+ %54.3 %8.6 %2.9 %42.9 %7.1 %4.3

§4.3 Rankings for USEMO 2023
Sc Num Cu Per
42 0 0 0.00%
41 0 0 0.00%
40 0 0 0.00%
39 0 0 0.00%
38 0 0 0.00%
37 0 0 0.00%
36 1 1 1.43%
35 0 1 1.43%
34 0 1 1.43%
33 0 1 1.43%
32 0 1 1.43%
31 0 1 1.43%
30 1 2 2.86%
29 0 2 2.86%

Sc Num Cu Per
28 1 3 4.29%
27 0 3 4.29%
26 0 3 4.29%
25 0 3 4.29%
24 0 3 4.29%
23 2 5 7.14%
22 3 8 11.43%
21 0 8 11.43%
20 1 9 12.86%
19 0 9 12.86%
18 0 9 12.86%
17 0 9 12.86%
16 2 11 15.71%
15 4 15 21.43%

Sc Num Cu Per
14 5 20 28.57%
13 1 21 30.00%
12 1 22 31.43%
11 0 22 31.43%
10 0 22 31.43%
9 2 24 34.29%
8 6 30 42.86%
7 15 45 64.29%
6 2 47 67.14%
5 2 49 70.00%
4 0 49 70.00%
3 2 51 72.86%
2 3 54 77.14%
1 8 62 88.57%
0 8 70 100.00%
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§4.4 Histogram for USEMO 2023
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§4.5 Full stats for USEMO 2023

Rank P1 P2 P3 P4 P5 P6 Σ

1. 7 7 1 7 7 7 36
2. 7 2 7 7 7 0 30
3. 7 7 0 7 7 0 28
4. 7 2 7 7 0 0 23
4. 6 1 1 7 7 1 23
6. 7 7 1 7 0 0 22
6. 7 7 1 7 0 0 22
6. 7 0 0 7 7 1 22
9. 7 7 0 6 0 0 20

10. 7 0 1 7 0 1 16
10. 7 0 1 7 0 1 16
12. 7 7 1 0 0 0 15
12. 7 0 1 7 0 0 15
12. 7 0 1 7 0 0 15
12. 7 0 1 7 0 0 15
16. 7 0 0 7 0 0 14
16. 7 0 0 7 0 0 14
16. 7 0 0 7 0 0 14
16. 7 0 0 7 0 0 14
16. 7 0 0 7 0 0 14
21. 6 0 0 7 0 0 13
22. 5 0 0 7 0 0 12
23. 7 0 1 0 0 1 9
23. 1 0 1 7 0 0 9
25. 7 1 0 0 0 0 8
25. 1 0 0 7 0 0 8
25. 1 0 0 7 0 0 8
25. 1 0 0 7 0 0 8
25. 1 0 0 7 0 0 8
25. 1 0 0 1 0 6 8
31. 7 0 0 0 0 0 7
31. 7 0 0 0 0 0 7
31. 7 0 0 0 0 0 7
31. 7 0 0 0 0 0 7
31. 7 0 0 0 0 0 7
31. 7 0 0 0 0 0 7
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Rank P1 P2 P3 P4 P5 P6 Σ

31. 7 0 0 0 0 0 7
31. 7 0 0 0 0 0 7
31. 7 0 0 0 0 0 7
31. 7 0 0 0 0 0 7
31. 7 0 0 0 0 0 7
31. 0 0 0 7 0 0 7
31. 0 0 0 7 0 0 7
31. 0 0 0 7 0 0 7
31. 0 0 0 7 0 0 7
46. 5 0 1 0 0 0 6
46. 0 0 0 0 0 6 6
48. 5 0 0 0 0 0 5
48. 5 0 0 0 0 0 5
50. 3 0 0 0 0 0 3
50. 1 1 1 0 0 0 3
52. 2 0 0 0 0 0 2
52. 2 0 0 0 0 0 2
52. 1 0 0 1 0 0 2
55. 1 0 0 0 0 0 1
55. 1 0 0 0 0 0 1
55. 1 0 0 0 0 0 1
55. 1 0 0 0 0 0 1
55. 1 0 0 0 0 0 1
55. 1 0 0 0 0 0 1
55. 0 0 1 0 0 0 1
55. 0 0 0 1 0 0 1
63. 0 0 0 0 0 0 0
63. 0 0 0 0 0 0 0
63. 0 0 0 0 0 0 0
63. 0 0 0 0 0 0 0
63. 0 0 0 0 0 0 0
63. 0 0 0 0 0 0 0
63. 0 0 0 0 0 0 0
63. 0 0 0 0 0 0 0
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