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1 Summary

The fourth USEMO was held on October 22 – 23, 2022. A total of 56 students
submitted at least one paper.

The test was generally too difficult. See the statistics at the end, but note that these
may be misleading due to students who ended up not submitting anything because they
did not feel like they had meaningful progress on any of the problems.

§1.1 Spectator commentary
• Hu Man Keat wrote a blog post covering the solve process and grading for the

first two problems. You can read it at: https://potatostealer.github.io/
opinions/2022/11/05/some-musings-for-october.html.

• I held a casual discussion of the day 2 problems on Twitch. The video is uploaded
at https://youtu.be/dC9VpiGVRqs.

If you know of any other commentary (video, blog, etc.) that you’d like to have
featured here, send it along and I will eventually add it.
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§1.2 Thanks
I am once again grateful to many individuals who helped make this competition possible.

§1.2a Proposers of problems
I thank Aayam Mathur, Anant Mudgal, Ankan Bhattacharya, Arjun Gupta, Boon Qing
Hong, Debayu Chakrabarti, Elbert Benedict, Holden Mui, Jovan Vuković, Krutarth Shah,
Lincoln Liu, Munmun Bhadra, Nikolai Beluhov, Santiago Rodriguez Sierra, Sutanay
Bhattacharya, Tee Jin Seng, Tilek Askerbekov, Tran Quang Hung, Valentio Iverson, for
contributing 32 problem proposals.

§1.2b Reviewers
Thank you to Nikolai Beluhov, who single-handedly reviewed every submitted proposal
and greatly helped shape the exam.

§1.2c Graders
Thanks to everyone who graded at least one paper: Aarav Gupta, Abdullahil Kafi, Akash,
Aleksij Tasikj, Ana Boiangiu, Andrei Chirita, Arghadeep Deb, Atul Shatavart Nadig,
Axel Dobloug, Bakhtier, Bhabanishankar Rath, Dan, Debayu Chakrabarti, Evan Chen,
Félix Moreno Peñarrubia, Gvozden Lapčević, Hu Man Keat, Imad Uddin Ahmad Hasin,
Immanuel Josiah Balete, Jayden Pan, Kang Taeyoung, Lasitha Vishwajith Jayasinghe,
Leon Lau, Lincoln Liu, Manasseh Ahmed, Marin Hristov, Max Chornyi, Orestis Lignos,
Pedro Henrique de Almeida Ursino, Petko Valeriev Lazarov, Pranav Choudhary, Rushil
Mathur, S M A Nahian, Sanjana Das, Trung Nguyen, Valentio Iverson, Victor Kostadinov.

§1.2d Other supporters
I would like to thank the Art of Problem Solving for offering the software and platform
for us to run the competition. Special thanks to Deven who was my main contact for
this iteration.

§1.3 Boya Zhang (2007-2022)
I am greatly saddened to report that one of the contestants, Boya Zhang, passed away
before the grading of the USEMO could be completed. He was supposed to have received
a Distinction award.

I was informed by one of his classmates, who wrote the following:

Boya was such an amazing, kind-hearted person. He excelled at math, video
games, and making us all laugh. He had such a positive impact on every
person who knew him, and on this community as well as the broader math
community. You might have seen him on the 2022 Mathcounts Nationals
Countdown Round, or you might have met him online on OTIS or somewhere
else, or you might have even knew him personally like I did. No matter what
it is, let us all respect his memory by having a moment of silence.
Thank you Boya, for everything you’ve given to us, for everything you
accomplished, and for showing us what it means to be a good person.

This short section is thus dedicated in Boya’s memory.
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2 Results
If you won one of the seven awards, please reach out to usemo@evanchen.cc to claim

your prize!

§2.1 Top Scores
Congratulations to the top three scorers, who win the right to propose problems to future
instances of USEMO.
1st place JunWen Huang, 33 points

2nd place Maximus Lu, 29 points

3rd place Krishna Pothapragada, 22 points

§2.2 Special awards
See the Rules for a description of how these are awarded. For the purposes of awarding
monetary prizes, ties are broken more or less arbitrarily by considering the presentation
of elegance of solutions (which is obviously subjective). When this occurs, the names of
tied students are noted as well.
Youth prize Allan Yuan

Top female Angela Liu

Top day 1 Alexander Wang

Top day 2 Srinivas Arun

§2.3 Honorable mentions
This year we award Honorable Mention to anyone scoring at least 17 points (who is not
in the top three already). The HM’s are listed below in alphabetical order.

Alexander Wang

Allan Yuan

Alston Xu

Bora Olmez

Christopher Qiu

Eduardo Aragon

Henrick Rabinovitz

Lerchen Zhong

Neal Yan

Wilbert Chu
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§2.4 Distinction
Normally, we award Distinction to anyone scoring at least 14 points (two fully solved
problems). Because this would be too restrictive this year due to a difficult exam (it
would have resulted in only five awards being given), we decreased the cutoff to just 7
points. In the future, the wording for the Distinction criteria will be edited to be either
14 points or top 25 students, whichever is more inclusive.

The Distinction awards are listed below in alphabetical order.

Advaith Avadhanam

Angela Liu

Aprameya Tripathy

Boya Zhang

Carlos Rodriguez

Christopher Lu

Elliott Liu

Ethan R Lee

Feodor Yevtushenko

Isaac Chen

Jacopo Rizzo

Owen Zhou

Razzi Masroor

Rohan Das

Ruilin Wang

Soham Bhadra

Srinivas Arun
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3 Solutions and marking schemes

§3.1 USEMO 1 — proposed by Holden Mui

Problem statement

A stick is defined as a 1× k or k × 1 rectangle for any integer k ≥ 1. We wish to
partition the cells of a 2022× 2022 chessboard into m non-overlapping sticks, such
that any two of these m sticks share at most one unit of perimeter. Determine the
smallest m for which this is possible.

§3.1a Solution
In general, with 2022 replaced by n, we will prove the answer is

m =


1 if n = 1

3 if n = 2
1
2(n

2 − 2n+ 7) if n ≥ 3 and n is odd
1
2(n

2 − 2n+ 8) if n ≥ 3 and n is even,

with the following construction. For n = 2022 this gives 2042224 as the answer.

n = 1 n = 2 n ≥ 3 odd n ≥ 4 even

The optimality for n ∈ {1, 2} is easy to check, so assume n ≥ 3.
The main idea is to view the problem as taking an n× n grid of squares and deleting

some of the edges until the resulting figure is a set of sticks. Since the number of sticks
is equal to n2 minus the number of removed edges in the square, it suffices to maximize
the number of removed edges. However:

Claim — No two of the deleted edges may share an endpoint.

Proof. Obvious.

As a consequence of this claim:

• At most 1
2(n− 3)2 edges can be removed within the central n− 3 by n− 3 grid of

lattice points.
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• Additionally, at most 4(n− 2) of the outer edges can be removed since there are
4(n− 2) lattice points within one unit of the boundary.

Hence, the minimum number of removed edges is at least

n2 −
(⌊

1

2
(n− 3)2

⌋
+ 4(n− 2)

)
which equals the claimed minimum.

Remark (Torus variant). One can ask the same problem on an n× n torus. The answer
is 1

2n
2 for even n and 1

2 (n
2 − 1) for odd n; the proof is analogous to the one above, but

without the outer edge consideration.

§3.1b Marking scheme
For solutions which are not complete, the following items are available and are additive:

(i) +1 point is awarded for stating the correct answer which is 2,042,224 (or the
answer for general n), even with no justification.

(ii) +1 point is awarded for giving a working construction.

(iii) +1 point for the observation that there is at most one deleted edge per vertex.

For weaker bounds of m (if the value of m is not correct), the following items are available,
which are not additive with (i)-(iii) or each other:

(iv) 1 point for constructions which use at most

1

2
(n2 − n) + 2 = 2043233

sticks; an example of such a construction is shown below for n = 8.

Note that, for odd n, this construction is actually optimal, so the student would
have gotten 2 points in an odd year!

(v) 0 points for constructions which use more than 2043233 sticks.

(vi) 1 point for proving that m ≥ cn2 is necessary to fulfill the condition (i.e. a bound,
not a construction), for any positive constant c ≥ 1/3.

(vii) 2 points for proving that m ≥ 1
2n

2 − cn is necessary to fulfill the condition (i.e. a
bound, not a construction), for any positive constant c ≥ 1.

And obviously, 7 points for a perfectly working solution. The following deductions can
apply to a correct solution; they are additive.
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(viii) -1 point if whole solution is correct but there are calculation/algebraic errors in
answer extraction (e.g. calculating for n = 2022, algebraic errors)

(ix) -1 point if the construction given (if any) is wrong or missing.

No deduction for not stating the answer for n = 2022 explicitly (if they did the problem
by considering a general n and there are no other errors).
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§3.2 USEMO 2 — proposed by Sutanay Bhattacharya

Problem statement

A function ψ : Z → Z is said to be zero-requiem if for any positive integer n and
any integers a1, . . . , an (not necessarily distinct), the sums a1 + a2 + · · ·+ an and
ψ(a1) + ψ(a2) + · · ·+ ψ(an) are not both zero.

Let f and g be two zero-requiem functions for which f ◦ g and g ◦ f are both the
identity function (that is, f and g are mutually inverse bijections). Given that f + g
is not a zero-requiem function, prove that f ◦ f and g ◦ g are both zero-requiem.

§3.2a Solution
We give three solutions. The first one explicitly classifies all zero-requiem functions after
which the problem becomes fairly routine. The second solution is more indirect but short.
The third solution is the author’s original submission.

¶ First solution (Nikolai Beluhov). First we describe all zero-requiems.

Lemma
A function f : Z → Z is a zero-requiem if and only if either

• there exists some real constant C such that f(n) > Cn for all integers n; or

• there exists some real constant C such that f(n) < Cn for all integers n.

Proof. Sufficiency is clear. We move on to necessity.
For all integers n, let Pn be the point (n, f(n)), and let P = {Pn | n ∈ Z}.
Suppose, for the sake of contradiction, that the origin O is in the convex hull of P.

Then it is also in the convex hull of some finite subset of P . Let O =
∑k

i=1 αiPni , where
the αi are positive and

∑
i αi = 1. Without loss of generality, all of the αi are rational.

Choose N so that αiN is a positive integer for all i. Then the multiset comprised of αiN
copies of ni, over all 1 ≤ i ≤ k, shows that f is not a zero-requiem, and we arrive at a
contradiction.

Thus O must be outside of the convex hull of P. Consequently, there exists a line `
through O such that all of the Pi are strictly on the same side of `. But that is exactly
what we wanted to prove.

The rest is not too difficult.
Let f and f−1 satisfy the Lemma with constants C and D, respectively. (But we have

not fixed the directions of the inequalities yet.) Note that C 6= 0 and D 6= 0 since both
of f and f−1 attain both positive and negative values.

Case 1 C > 0.
If f(n) > Cn for all n, then also f(f(n)) > Cf(n) > C2n for all n, and so f ◦ f
satisfies the Lemma with constant C2. The sub-case when f(n) < Cn is analogous.
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Case 2 D > 0.
If f−1(n) > Dn for all n, then also n = f−1(f(n)) > Df(n) and f(n) < 1

Dn for all
n, and we finish as in Case 1. The sub-case when f−1(n) < Dn is analogous.

Case 3 C < 0 and D < 0.
If f(n) > Cn and f−1(n) > Dn for all n, then clearly f + f−1 satisfies the Lemma
with constant C+D. The sub-case when f(n) < Cn and f−1(n) < Dn is analogous.
What remains is f(n) < Cn and f−1(n) > Dn for all n. (The sub-case when
f(n) > Cn and f−1(n) < Dn is analogous. We simply swap f and f−1.) By
the same reasoning as in Case 2, it follows that f(n) > 1

Dn for all n. (The
direction of the inequality is reversed because this time around D < 0.) But then
f(0) < C · 0 = 0 and f(0) > 1

D · 0 = 0, and we arrive at a contradiction. Thus this
final sub-case cannot occur.

¶ Second solution (rephrased from several contestants). Assume for contradiction
that neither f + g nor g ◦ g is zero-requiem, meaning that there exist c1, . . . , cm and w1,
. . . , wn such that

0 =

m∑
i=1

ci =

m∑
i=1

f(ci) +

m∑
i=1

g(ci)

0 =

n∑
i=1

wi =

n∑
i=1

g(g(wi)).

Set xi = g(wi) and discard wi; then we can rewrite the two equations as

0 =

m∑
i=1

ci =

m∑
i=1

f(ci)︸ ︷︷ ︸
6=0 as f is ZR

+

m∑
i=1

g(ci)︸ ︷︷ ︸
6=0 as g is ZR

0 =
n∑

i=1

f(xi) =
n∑

i=1

g(xi).

Since f and g were given to be zero-requiem, the sums
∑m

i=1 f(ci),
∑m

i=1 g(ci), and∑n
i=1 xi are all nonzero. So let’s say WLOG that

∑m
i=1 g(ci) and

∑m
i=1 xi have opposite

sign. That means we have integers p, q > 0 such that

p
m∑
i=1

(ci) + q
n∑

i=1

xi = 0.

But

p
m∑
i=1

ci + q
n∑

i=1

f(xi) = p · 0 + q · 0 = 0.

This is a contradiction to f being zero-requiem if we feed in the sequence constructed by
taking (c1, . . . , cm) each p times and (x1, . . . , xn) each q times.

¶ Third solution (author’s). For comedic value, we retain the Code Geass flavortext
suggested by the authors.

We say a function f : Z → Z is
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• Nunnally if a1 + · · ·+ an ≥ 0 implies f(a1) + · · ·+ f(an) > 0;

• Marianne if a1 + · · ·+ an ≥ 0 implies f(a1) + · · ·+ f(an) < 0;

• Jeremiah if a1 + · · ·+ an ≤ 0 implies f(a1) + · · ·+ f(an) > 0;

• Charles if a1 + · · ·+ an ≤ 0 implies f(a1) + · · ·+ f(an) < 0;

for any finite sequence a1, . . . , an of integers.

Claim — A function is zero-requiem if and only if it is at least one of these four
categories.

Proof. Using the condition on the sequence (0, 0) we see that f(0) 6= 0. Thus there are
two cases, f(0) > 0 and f(0) < 0. These cases are essentially the same, so we start with
f(0) > 0.

When f(0) > 0, there are three sub-cases:

• Suppose there exists a positive integer x so that f(x) ≤ 0, say f(x) = −y. We claim
that f is a Jeremiah. Indeed, if not, then there exist a1,. . . ,an with non-positive
sum −p, so that f(a1) + · · ·+ f(an) = −S is non-positive. Consider the following
sequence:

a1, . . . , an , . . . , a1, . . . , an︸ ︷︷ ︸
xf(0) blocks

, x, . . . , x︸ ︷︷ ︸
pf(0) x’s

, 0, . . . , 0︸ ︷︷ ︸
xS + py 0’s

.

Clearly this has sum xf(0) · (−p) + pf(0) · x+ 0 = 0. The sum of the sequence of
the f−values of these is

xf(0) · (f(a1) + · · ·+ f(an)) + pf(0) · f(x) + (xS + py) · f(0)
= xf(0)(−S) + pf(0)(−y) + (xS + py)f(0) = 0

This is a contradiction, proving our claim.

• Suppose there exists a negative integer x so that f(x) ≤ 0. Now the function f1
defined by f1(x) = f(−x) satisfies the hypotheses of the previous case, so f1 is a
Jeremiah. Then clearly f is a Nunnally.

• Otherwise f(x) > 0 for all x, so f is trivially a Nunnally.

Now say f(0) < 0. Then f2 = −f is also a zero-requiem and satisfies f2(0) > 0, so it’s
either a Jeremiah or a Nunnally, whence clearly f is either a Charles or Marianne. This
proves our claim.

Claim — The following four statements are true.

• If f is a Nunnally or a Jeremiah, f−1 cannot be Nunnally or a Marianne.

• If f is a Marianne or a Charles, f−1 cannot be a Jeremiah or a Charles.

• If f−1 is a Nunnally or a Jeremiah, f cannot be Nunnally or a Marianne.

• If f−1 is a Marianne or a Charles, f cannot be a Jeremiah or a Charles.
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Proof. For the first statement, note that

a1 + · · ·+ an = 0 =⇒ f(a1) + · · ·+ f(an) > 0

=⇒ f−1(f(a1)) + · · ·+ f−1(f(an)) 6= 0

=⇒ a1 + · · ·+ an 6= 0.

The second statement is proven in the same way. The third and fourth statements follow
by swapping the roles of f and f−1 in the first two statements.

Back to the main problem.

Claim — If f is a Nunnally or a Charles, then f ◦ f is a zero-requiem.

Proof. Indeed, in the first case, we have

a1 + · · ·+ an = 0 =⇒ f(a1) + · · ·+ f(an) > 0

=⇒ f(f(a1)) + · · ·+ f(f(an)) > 0

=⇒ (f ◦ f)(a1) + · · · (f ◦ f)(an) 6= 0,

proving the claim. The other case follows similarly.

The only remaining cases are when f and f−1 are both Mariannes or they are both
Jeremiahs. In the first case,

a1 + · · ·+ an = 0 =⇒ f(a1) + · · ·+ f(an) < 0 and f−1(a1) + · · · f−1(an) < 0

=⇒ (f(a1) + f−1(a1)) + · · ·+ (f(an) + f−1(an)) < 0

=⇒ (f + f−1)(a1) + · · ·+ (f + f−1)(an) 6= 0,

which means f + f−1 is zero-requiem. A similar argument holds when f , f−1 are both
Jeremiahs, so we are done.

§3.2b Marking scheme
For incomplete solutions, the following points are not additive.

(i) 4 points: Proving the first lemma in the first solution

(ii) 1 point: Conjecturing the first lemma in the first solution

(iii) 0 points: Neither
∑k

i=1 f(ai) nor
∑k

i=1 g(ai) is zero.

(iv) 1 point: For showing that for all (an)n such a1 + · · ·+ an = 0, f(a1) + · · ·+ f(an)
are either all positive or all negative.

(v) 2 points: For proving f(x) > 0 must hold for either all positive x or all negative x

(vi) 1 point: For considering f(a1) + · · · + f(ak) = g(f ◦ f(a1)) + · · · + g(f ◦ f(ak))
and f, g being opposite signs

(vii) 3 Points**: Proof of existence of
∑`

i=1 bi that has opposite sign with either∑k
i=1 f(ai) or

∑k
i=1 g(ai) (Only for proofs by contradiction)

(viii) 5 points: Failing to finish in the case f(x) > 0 for x < 0, but otherwise complete

(ix) 5 points: Failing to finish in the case f(x) > 0 for x > 0, but otherwise complete
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§3.3 USEMO 3 — proposed by Nikolai Beluhov

Problem statement

Point P lies in the interior of a triangle ABC. Lines AP , BP , and CP meet the
opposite sides of triangle ABC at points A′, B′, and C ′, respectively. Let PA be the
midpoint of the segment joining the incenters of triangles BPC ′ and CPB′, and
define points PB and PC analogously. Show that if

AB′ +BC ′ + CA′ = AC ′ +BA′ + CB′,

then points P , PA, PB, and PC are concyclic.

§3.3a Solution
We present two approaches, one completely synthetic, and the other arguably more
straightforward length computation.

¶ First solution (author’s). We will need a couple of lemmas.

Lemma 3.3.1 (“Sparrow lemma”)
Let I be the incenter of triangle ABC. Point U lies on ray AB→ and point V lies
on ray CA→ beyond A so that AU −AV = AB +AC −BC. Then points A, I, U ,
and V are concyclic.

Proof. Let the incircle of triangle ABC touch sides AB and AC at points K and L,
respectively. Since AK = AL = 1

2(AB + AC −BC), it follows that KU = LV . Hence,
right triangles IKU and ILV are congruent, and so ∠AUI = ∠IUK = ∠IV L =
∠AV I.

Lemma 3.3.2 (IMO 1979/3)
Let P be a common point of the two circles Γ1 and Γ2. A variable line ` through P
meets Γ1 and Γ2 again at points T1 and T2, respectively. Then, as line ` varies, the
perpendicular bisectors of all segments T1T2 pass through a constant point.

Proof. Let D1 and D2 be the points diametrically opposite P in circles Γ1 and Γ2,
respectively. Then both lines D1T1 and D2T2 are perpendicular to segment T1T2. Thus
the perpendicular bisector of segment T1T2 coincides with the mid-line of the strip
formed by lines D1T1 and D2T2, and so it always passes through the midpoint of segment
D1D2.

We are ready to tackle the problem.
Since AB′ + BC ′ + CA′ = AC ′ + BA′ + CB′, we can find points UA and VA on ray

PA→, UB and VB on ray PB→, and UC and VC on ray PC→ simultaneously satisfying
all six of the equations

PUA − PVB = PA+ PB′ −AB′,

14
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PUA − PVC = PA+ PC ′ −AC ′,

PUB − PVC = PB + PC ′ −BC ′

PUB − PVA = PB + PA′ −BA′,

PUC − PVA = PC + PA′ − CA′,

PUC − PVB = PC + PB′ − CB′,

because any five of the equations implies the sixth one.
Denote by IA, IB, IC , JA, JB, JC the incenters of 4BPC ′, 4CPA′, 4APB′, 4CPB′,

4APC ′, 4BPA′, respectively, as shown below.

A

B CA′

B′

P

C ′

IA

JA

IB

JB

IC

JC

UA

VB

UC

VA

UB

VC

QA

QB

QC

K

By Lemma 1 applied to triangle APB′, we get that P , IC , UA, VA are concyclic.
Similarly, the other five incenters lie on the analogous circles through P .

Let sA be the perpendicular bisector of segment IAJA, let tA be the perpendicular
bisector of segment UAVA, and define lines sB, tB, sC , and tC analogously.

Consider the circumcircles (PIAUBUC) and (PJAVBVC). Applying Lemma 2 to this
shows that lines sA, tB, and tC are concurrent at a point QA. Analogously, lines sB, tC ,
and tA meet at some point QB and lines sC , tA, and tB meet at some point QC .

Observe that lines tA, tB, and tC are perpendicular to lines AA′, BB′, and CC ′,
respectively, whereas lines sA, sB, and sC are perpendicular to lines IB,CIC,B, IC,AIA,C ,
and IA,BIB,A, respectively. Since the latter three lines bisect the pairwise angles between

15
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the former three lines, we conclude that lines sA, sB , and sC bisect the interior angles of
the triangle formed by lines tA, tB, and tC .

Therefore, lines sA, sB, and sC meet at the incenter K of triangle QAQBQC . Or,
equivalently, all four points P , PA, PB, and PC lie on the circle with diameter PK. The
solution is complete.

Remark. There are at least three notable points P which satisfy the conditions of the
problem:

• The centroid, when A′, B′, and C ′ are the midpoints of the sides;

• the Gergonne point, when A′, B′, and C ′ are the tangency points of the incircle with
the sides;

• and the Nagel point, when A′, B′, and C ′ are the tangency points of the corresponding
excircles with the sides.

These special cases are all in Alexander Skutin, Tran Quang Hung, Antreas Hatzipolakis,
and Kadir Altintas, Cosmology of Plane Geometry, 2019; revised edition 2021. The case of
the Gergonne point is Theorem 1.1.1 in the 2019 edition and Theorem 1.1.1 (1) in the 2021
edition; the case of the Nagel point is Theorem 1.1.1 (2) in the 2021 edition; and the case of
the centroid is Theorem 5.1.1 in the 2019 edition and Theorem 2.1.1 in the 2021 edition.
Thus the problem generalises all of these theorems.

Remark. Both lemmas are well-known. Lemma 1 is, for example, in Alexander Polyanskiy,
Vorobyami po Pushkam!, Kvant 02/2012. Lemma 2 is IMO 1979, problem 3 by Nikolay
Vasilyev and Igor Sharygin; reprinted as Kvant 12/1979, problem M600, part (a).

¶ Second solution (sent by Arjun Gupta). The proof hinges on the following lemma,
which is essentially a restatement of Ptolemy’s theorem.

Lemma (Trigonometric Ptolemy)
Let `A, `B, `C be three lines concurrent at a point P . Let θA denote value of non-
obtuse angle between `B and `C . Define θB, θC similarly. Impose a sign convention
for lengths on `A, `B , `C such that among the three rays formed by positive direction
through P , no ray lies inside the angle formed by the other two rays. Let PA be any
point on `A, and define `B, `C similarly. Then

sin θA ·
−−→
PPA + sin θB ·

−−→
PPB + sin θC ·

−−→
PPC = 0

holds if and only if points P , PA, PB, PC are concyclic.

Proof. Suppose first that P , PA, PB , PC are concyclic. WLOG points P , PB , PA, PC lie
on a circle in that order. Ptolemy’s Theorem gives

PPA · PBPC = PPB · PCPA + PPC · PAPB.

By law of sines,
PBPC : PCPA : PAPB = sin θA : sin θB : sin θC

So we obtain
sin θA · PPA = sin θB · PPB + sin θC · PPC .

16
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Now PA lies inside ∠PBPPC , so `A passes through interior of ∠PBPPC . This means−−→
PPB,

−−→
PPC have the same sign, WLOG both are non-negative. Now

−−→
PPA must be

non-positive, otherwise P lies inside 4PAPBPC . It follows

sin θA(−
−−→
PPA) = sin θB(

−−→
PPB) + sin θC(

−−→
PPC)

=⇒ sin θA ·
−−→
PPA + sin θB ·

−−→
PPB + sin θC ·

−−→
PPC = 0.

This proves one direction. Now the converse direction just follows from a phantom point
argument.

Let IA, JA denote the incenters of triangles BPC ′ and CPB′, respectively. Define IB,
JB, IC , ICb similarly. Let `A, `B, `C denote the lines IAJA, IBJB, ICJC , respectively.
Clearly P ∈ `A, `B, `C .

We will write
−−→
AB to denote the directed length of segment AB. Let the lengths on `A,

`B, `C are directed, with lengths
−−→
PIA,

−−→
PIB,

−−→
PIC being positive.

For a triangle PXY , let s(PXY ) denote the value PX+PY−XY
2 . Note if I is incenter

of 4PXY , then

PI =
s(PXY )

cos ∠XPY
2

.

Since AB′ +BC ′ + CA′ = AC ′ +BA′ + CB′, so we obtain

s(PBC ′) + s(PCA′) + s(PAB′) = s(PCA′) + s(PCB′) + s(PAC ′).

Let θA be acute angle between lines `B and `C . Define θB, θC similarly. Observe that

θA =
∠BPC

2
= 90◦ − ∠BPC ′

2
= 90◦ − ∠CPB′

2
.

A

B CA′

B′

C ′

P
IA JA

JB

IB

JC

IC

PA

PB

PC

So we obtain

−−→
PIA =

s(PBC ′)

sin θA
,
−−→
PJA =

−s(PCA′)

sin θA

17



Evan Chen — 24 January 2024 The 4th US Ersatz Math Olympiad

=⇒
−−→
PPA =

−−→
PIA +

−−→
PJA

2
=

1

2

(
s(PBC ′)− s(PCA′)

sin θA

)
We analogously obtain

−−→
PPB =

1

2

(
s(PCA′)− s(PCB′)

sin θB

)
−−→
PPC =

1

2

(
s(PAB′)− s(PAC ′)

sin θC

)
It follows that

sin θA ·
−−→
PPA + sin θB ·

−−→
PPB + sin θC ·

−−→
PPC = 0

so our earlier Ptolemy-based lemma applies and the problem is solved.

§3.3b Marking scheme
As usual, incomplete computational approaches earn partial credits only based on the
amount of synthetic progress which is made. No points are awarded for just drawing a
diagram or simple observations.

Solution 1 Rubric
(i) 2 points are awarded for proving the points P , IC , UA, VA are concyclic (and the

symmetric ones)

(ii) 2 points are awarded for using proving sA, tB, tC meet at QA (and the symmetric
ones)

(iii) 3 points for finishing the problem

Solution 2 Rubric
(iv) 1 point is awarded for stating the Lemma

(v) 1 point is awarded for proving the Lemma

(vi) 4 points for:

sin
(
90◦ +

ψA

2

)
·
−−→
PPA =

PB − PC + PC ′ − PB′ −BC ′ + CB′

4

(vii) 1 point is awarded for finishing the problem

Outside the two solutions
(viii) If there is any non-trivial linear relation for the tangents from P to the incircles, 1

point is awarded.

If the student has approaches from both the solutions, they get the maximum of the two
possible markings.
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§3.4 USEMO 4 — proposed by Tilek Askerbekov

Problem statement

Let ABCD be a cyclic quadrilateral whose opposite sides are not parallel. Suppose
points P , Q, R, S lie in the interiors of segments AB, BC, CD, DA, respectively,
such that

∠PDA = ∠PCB, ∠QAB = ∠QDC, ∠RBC = ∠RAD, and ∠SCD = ∠SBA.

Let AQ intersect BS at X, and DQ intersect CS at Y . Prove that lines PR and
XY are either parallel or coincide.

§3.4a Solution
We present two approaches. The first is based on the points U = AD ∩ BC and
V = AB ∩ CD. The latter is based on E = AC ∩BD.

¶ First solution (author’s). Let U = AD ∩BC and V = AB ∩ CD.

A

B C

D

V

U

P

Q

R

S

X

Y

Claim — We have US = UQ and V P = V R.

Proof. We have

]BSA = ]BAS + ]SBA = ]BCD + ]DCS = ]BCS
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hence
US2 = UB · UC.

Similarly, UQ2 = UA · UD = UB · UC. So, US = UQ; similarly V P = V R.

Claim — Quadrilateral SXQY is a kite (with SX = SY and QX = QY ).

Proof. We have

]BSQ = ]USQ− ]USB = ]SQU − ]SCB = ]QSC

so SQ bisects ∠BSC; similarly it bisects ∠AQD.

Claim — The internal bisectors of ∠U and ∠V are perpendicular.

Proof. The angle between these angle bisectors equals

1

2
∠DUC + ∠DAV +

1

2
∠BV C

= 90◦ − ∠ADC
2

− ∠DCB
2

+ ∠BCD + 90◦ − ∠ABC
2

− ∠DCB
2

= 90◦.

As SQ and PR are perpendicular to the internal bisectors of ∠U and ∠V by the first
claim, so by the third claim QS ⊥ PR. Meanwhile the second claim gives that XY is
perpendicular to SQ, completing the problem.

¶ Second solution due to Nikolai Beluhov. Let E = AC ∩BD. Then E lies on XY
by Pappus’s theorem.

A

B C

D

X

Y

Q

S

E
A

B C

D

X ′

Y ′

P

R

E

Claim — Line XEY is the interior bisector of ∠AEB and ∠CED.

Proof. The angle conditions imply that X and Y are corresponding points in the two
similar triangles AEB and DEC. Hence, ∠AEX = ∠DEY and ∠BEX = ∠CEY . Since
segments EX and EY are collinear, we’re done.
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Introduce the points

X ′ = BR ∩ CP and Y ′ = AR ∩DP.

By the same argument as before, line X ′EY ′ is the internal angle bisector of angles
∠AED and ∠BEC.

Claim — Quadrilateral PX ′RY ′ is a kite (with PX ′ = PY ′ and RX ′ = RY ′).

Proof. Because X ′ and Y ′ are corresponding points in 4BEC and 4AED,

∠RX ′Y ′ = 180◦ − ∠BX ′E = 180◦ − ∠AY ′E = ∠RY ′X ′,

and so RX ′ = RY ′. Similarly, PX ′ = PY ′.

Thus, PR is perpendicular to X ′EY ′, hence parallel to the interior bisector of ∠AEB
and ∠CED. Together with the first claim, we’re done.

Remark. It’s possible to write up this solution without ever defining X ′ and Y ′. The idea
is to instead prove SXQY is a kite (which is natural since X and Y are already marked)
and hence obtain the sentence “SQ is parallel to the internal angle bisector of ∠AED and
∠BEC” (using the first claim). Then cyclically shift the labels in to get the sentence “PR
is parallel to the internal angle bisector of ∠DEC and ∠AEB”.

§3.4b Marking scheme
As usual, incomplete computational approaches earn partial credits only based on the
amount of synthetic progress which is made. No points are awarded for just drawing a
diagram or simple observations.

There are two major paths a solution can follow:

• One which introduces and works with AB ∩ CD and AD ∩ BC (the first official
solution)

• One which works around AC ∩BD (the second official solution).

Marks are to be given as the maximum of the scores obtained across either of the
approaches.

Rubric for solution 1
The following partial items are available and are additive:

• 1 point for showing that US = UQ or something similar

• 3 points for showing that SQ bisects ∠BSC and ∠AQD or any claim analogous
to this, and concluding that SXQ is congruent to SY Q (or even just directly using
this to claim XY ⊥ SQ).

• 2 points for proving that PR ⊥ SQ

• 1 point for completing the solution

For solutions that achieve at most 1 point from the above scheme the following items
(additive) are available too.

• +1 point for making the correct conjecture that SXQY is a kite, or equivalently
that SXQ is congruent to SY Q (with no proof attached)
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Rubric for solution 2
The following partial items are available and are additive:

• 0 points for just claiming E lies on XY by Pappus’ theorem.

• 2 points for the claim that X and Y are corresponding points in similar triangles
AEB and DEC.

• 2 points for proving that line XY bisects ∠AEB and/or ∠CED.

• 2 points for showing that XY ⊥ QS

• 1 point for completing the solution

For solutions that achieve at most 2 points from the above scheme the following items
(additive) are available too.

• +1 point for making the correct conjecture that XY ⊥ SQ

• +1 point for making the correct conjecture that line XY bisects ∠AEB and/or
∠CED.

Common items for both solutions
• No deduction for configuration issues (such as not using directed angles) or small

typos in angle chasing

• No deduction for making claims (without written proof) that have reasoning
analogous to a claim already proven. (As an example, after showing SQ bisects
∠BSC there is no need to prove that QS bisects ∠AQD).

• Of course, a solution that uses a mixture of both approaches but ends up proving
the required condition and is mathematically accurate receives full credit too.

• -1 point for skipping the angle chase for showing the angle bisectors of angle U
and angle V are perpendicular (in case that approach has been taken, and the
solution is complete otherwise)
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§3.5 USEMO 5 — proposed by Jovan Vuković

Problem statement

Let τ(n) denote the number of positive integer divisors of a positive integer n (for
example, τ(2022) = 8). Given a polynomial P (X) with integer coefficients, we define
a sequence a1, a2, . . . of nonnegative integers by setting

an =

{
gcd

(
P (n), τ(P (n))

)
if P (n) > 0

0 if P (n) ≤ 0

for each positive integer n. We then say the sequence has limit infinity if every
integer occurs in this sequence only finitely many times (possibly not at all).

Does there exist a choice of P (X) for which the sequence a1, a2, . . . has limit
infinity?

§3.5a Solution
We claim the answer is no, such P does not exist.

Clearly we may assume P is nonconstant with positive leading coefficient. Fix P and
fix constants n0, c > 0 such that c = P (n0) > 0. We are going to prove that infinitely
many terms of the sequence are at most c.

We start with the following lemma.

Claim — For each integer n ≥ 2, there exists an integer r = r(n) such that

• For any prime p which is at most n, we have νp(P (r)) = νp(c).

• We have
c ·

∏
prime p≤n

≤ r ≤ 2c ·
∏

prime p≤n

p.

Proof. This follows by the Chinese remainder theorem: for each p ≤ n we require r ≡ n0
(mod pνp(c)+1), which guarantees νp(P (r)) = νp(P (n0)) = νp(c). Then there exists such
an r modulo

∏
p≤n p

νp(c)+1 as needed.

Assume for contradiction that all ai are eventually larger than c. Take n large enough
that n > c and r = r(n) has ar > c. Then consider the term ar:

• Using the conditions in the lemma it follows there exists a prime pn > n which
divides ar = gcd(P (r), τ(P (r))) (otherwise ar, which divides P (r), is at most c).

• As pn divides τ(P (r)), this forces P (r) to be divisible by (at least) qpn−1
n for some

prime qn.

• For the small primes p at most n, we have νp(P (r)) = νp(c) < c < n ≤ pn − 1. It
follows that qn > n.

• Ergo,
P (r) ≥ qpn−1

n > nn.
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In other words, for large enough n, we have the asymptotic estimate

nn < P (r) = O(1) · rdegP

= O(1) · cdegP ·
∏

prime p≤n

pdeg p

< O(1) · ndegP ·π(n)

where π(n) denotes the number of primes less than n. For large enough n this is impossible
since the primes have zero density:

lim
n→∞

π(n)

n
= 0.

Remark. For completeness, we outline a short elementary proof that limn→∞
π(n)
n = 0. For

integers M > 0 define

δ(M) :=
∏
p≤M

(
1− 1

p

)
.

Then π(n) < δ(M)n+
∏

p≤M p, so it suffices to check that limM→∞ δ(M) = 0. But

1

δ(M)
=

∏
p≤M

(
1− 1

p

)−1

=
∏
p≤M

(
1 +

1

p
+

1

p2
+ . . .

)
≥ 1 +

1

2
+ · · ·+ 1

M

which diverges for large M .

§3.5b Marking scheme
None of the following items are additive.

(i) 0 points for claiming the answer is no.

(ii) 0 points for solving the problem for linear polynomials.

(iii) 1 point for claiming infinitely many terms of the sequence have value c for some
constant c in terms of P whose νp’s are “well-behaved”.

(iv) 1 point for creating a useful sequence r(n) but not finishing.

(v) 2 points for proving that for any constant C > 0, there exists some prime p > C
and index r, for which p | ar.

(vi) 4 points if, in the previous item, it is also proved that r is bounded by a reasonable
function of p like pO(p).

(vii) 6 points for finishing the problem apart from observing primes have zero density.

(viii) No points deducted for stating that π(n) < Cn for big enough n, for any value of
C, even without proof.

(ix) No points deducted for small errors caused by P (n) ≤ 0 for finitely many n.

(x) 7 points for a complete solution.
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§3.6 USEMO 6 — proposed by Evan Chen

Problem statement

Find all positive integers k for which there exists a nonlinear function f : Z → Z
which satisfies

f(a) + f(b) + f(c) =
f(a− b) + f(b− c) + f(c− a)

k

for any integers a, b, c with a+ b+ c = 0.

§3.6a Solution
The complete set of solutions is given by

• For k = 1, f(x) ≡ C1x+ C2(x mod 2) + C3.

• For k = 3, f(x) ≡ C1x+ C2x
2.

• For k = 9, f(x) ≡ C1x+ C2x
4.

• For all other k, only f(x) ≡ C1x.

Here C1, C2, C3 are arbitrary integers. We can check they work, so now we just want to
show they are the only ones.

We will solve the functional equation for f : Z → C, claiming that the above solution
set remains the only one. If k = 1, we can shift by constants to get f(0) = 0; if k 6= 1
apply a = b = c = 0 to get f(0) = 0 anyways. Now note that f(x) ≡ x is a solution, so
we may shift by the identity to assume f(−1) = f(1).

We will prove in this case, f ≡ 0 unless k = 1, 3, 9.
Now plug in (a, b, c) = (n+ 1,−n,−1) and (a, b, c) = (1, n,−(n+ 1)) gives

f(2n+ 1) + f(−n+ 1) + f(−n− 2) = k (f(n+ 1) + f(−n) + f(−1))

= k (f(−n− 1) + f(n) + f(1)) .

The last two by induction imply f is even. Now, by using this and (a, b, c) = (n,−n, 0)
we obtain

f(2n+ 1) + f(n+ 2) + f(n− 1) = k (f(n+ 1) + f(n) + f(1))

f(2n) + 2f(n) = k (2f(n) + f(0)) =⇒ f(2n) = (2k − 2)f(n).

Thus f is determined recursively by f(1) (by induction). In particular, if f(1) = 0 then
f(n) ≡ 0 by induction.

Now, let us assume f(1) 6= 0, and hence by scaling f(1) = 1. We can then compute:

f(1) = 1

f(2) = 2k − 2

f(3) = k2

f(4) = 4k2 − 8k + 4

f(5) = k3 − 2k2 + 7k − 5
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f(6) = 2k3 − 2k2

f(7) = 4k3 − 6k2 − 4k + 7

f(8) = 8k3 − 24k2 + 24k − 8.

Plug in (a, b, c) = (5,−3,−2) and compute f(8) + f(1) + f(7) = k (f(5) + f(3) + f(2)),
which simplifies to give

k4 − 13k3 + 39k2 − 27k = 0 =⇒ k(k − 1)(k − 3)(k − 9) = 0

so k = 1, k = 3, or k = 9. In these cases it is easy to check by induction now that
f(n) = n mod 2, f(n) = n2, and f(n) = n4.

§3.6b Marking scheme
In this rubric, a student earns up to 2 points for giving valid constructions, and up to 5
points for proving those solutions are the only ones. These points for the construction
are additive with those for the proof.

The construction has three steps:

• Proving k = 3 works (writing something like: just expand and use (a+ b+ c)2 = 0,
counts as a fine proof).

• Proving k = 1 works (writing something like: check cases according to parity and
use a+ b+ c = 0, counts as a fine proof).

• Proving k = 9 works (writing something like: put c = −(a + b) and just expand
the 4th powers, counts as a fine proof).

They are scored as follows:

(i) 1 point for any two of the three constructions

(ii) 2 points for obtaining all three constructions.

For the rest of the proof (not additive with each other):

(iii) 0 points for just f(0) = 0.

(iv) 0 points for relating f(x) to f(−x), say by shifting.

(v) 2 points for obtaining a recursion for f(0), f(1), . . .in terms of k, such as f(2x) =
(2k− 2)f(x) and f(2x+1) = . . . , which in principle allows the computation of any
f(N) for any N > 0.
In rare cases, it’s possible to award 1 point for more generally showing that if
f(x) has certain “property” for enough small values of |x|, then f(x) has that
property for every value of x. This is in the same spirit as recursion, but less
rigidly defined. The criteria for a “property” should be consulted with the problem
captain, case-by-case.

(vi) 3 points for computing f(N) in terms of k for two odd values of N ≥ 5. It’s okay
even if the polynomials is not completely correct (i.e. arithmetic errors).

(vii) 4 points for obtaining a nonzero polynomial in k which equals 0, say by plugging
in (a, b, c) = (5,−3,−2). It’s okay even if the polynomials is not completely correct
(i.e. arithmetic errors), or the degree of the polynomial is greater than 3.

(viii) 5 points for concluding k ∈ {1, 3, 9} correctly.
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4 Statistics

§4.1 Summary of scores for USEMO 2022
N 56
µ 9.09
σ 8.19

1st Q 2
Median 7

3rd Q 16

Max 33
Top 3 22

Top 12 17

§4.2 Problem statistics for USEMO 2022

P1 P2 P3 P4 P5 P6
0 14 43 51 29 45 43

1 10 3 0 4 3 6

2 11 0 0 0 1 2

3 1 1 0 0 0 0

4 1 2 0 3 0 0

5 1 0 1 0 0 1

6 1 0 1 4 3 1

7 17 7 3 16 4 3

Avg 3.02 1.12 0.57 2.71 0.91 0.75

QM 4.17 2.63 1.93 4.18 2.36 1.99
#5+ 19 7 5 20 7 5
%5+ %33.9 %12.5 %8.9 %35.7 %12.5 %8.9

§4.3 Rankings for USEMO 2022
Sc Num Cu Per
42 0 0 0.00%
41 0 0 0.00%
40 0 0 0.00%
39 0 0 0.00%
38 0 0 0.00%
37 0 0 0.00%
36 0 0 0.00%
35 0 0 0.00%
34 0 0 0.00%
33 1 1 1.79%
32 0 1 1.79%
31 0 1 1.79%
30 0 1 1.79%
29 1 2 3.57%

Sc Num Cu Per
28 0 2 3.57%
27 0 2 3.57%
26 0 2 3.57%
25 0 2 3.57%
24 0 2 3.57%
23 0 2 3.57%
22 1 3 5.36%
21 3 6 10.71%
20 1 7 12.50%
19 3 10 17.86%
18 1 11 19.64%
17 2 13 23.21%
16 3 16 28.57%
15 1 17 30.36%

Sc Num Cu Per
14 1 18 32.14%
13 1 19 33.93%
12 0 19 33.93%
11 0 19 33.93%
10 1 20 35.71%
9 2 22 39.29%
8 2 24 42.86%
7 6 30 53.57%
6 3 33 58.93%
5 2 35 62.50%
4 1 36 64.29%
3 1 37 66.07%
2 8 45 80.36%
1 6 51 91.07%
0 5 56 100.00%
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§4.4 Histogram for USEMO 2022
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§4.5 Full stats for USEMO 2022

Rank P1 P2 P3 P4 P5 P6 Σ

1. 7 0 6 7 7 6 33
2. 7 7 0 7 7 1 29
3. 7 1 0 7 0 7 22
4. 7 7 0 7 0 0 21
4. 7 0 7 7 0 0 21
4. 7 0 0 7 0 7 21
7. 7 7 0 6 0 0 20
8. 7 4 7 0 0 1 19
8. 6 7 0 0 6 0 19
8. 5 7 0 0 7 0 19

11. 7 3 0 7 1 0 18
12. 7 4 0 6 0 0 17
12. 7 0 0 4 6 0 17
14. 7 0 0 7 2 0 16
14. 7 0 0 1 7 1 16
14. 1 0 0 7 1 7 16
17. 7 0 0 7 0 1 15
18. 0 0 7 6 1 0 14
19. 1 0 0 6 6 0 13
20. 2 7 0 0 0 1 10
21. 7 0 0 0 0 2 9
21. 2 0 0 7 0 0 9
23. 1 0 0 7 0 0 8
23. 1 0 0 7 0 0 8
25. 7 0 0 0 0 0 7
25. 7 0 0 0 0 0 7
25. 0 7 0 0 0 0 7
25. 0 0 0 7 0 0 7
25. 0 0 0 7 0 0 7
25. 0 0 0 7 0 0 7
31. 2 0 0 4 0 0 6
31. 0 1 0 0 0 5 6
31. 0 0 5 1 0 0 6
34. 4 0 0 1 0 0 5
34. 0 1 0 4 0 0 5
36. 3 0 0 1 0 0 4
37. 1 0 0 0 0 2 3
38. 2 0 0 0 0 0 2
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Rank P1 P2 P3 P4 P5 P6 Σ

38. 2 0 0 0 0 0 2
38. 2 0 0 0 0 0 2
38. 2 0 0 0 0 0 2
38. 2 0 0 0 0 0 2
38. 2 0 0 0 0 0 2
38. 2 0 0 0 0 0 2
38. 2 0 0 0 0 0 2
46. 1 0 0 0 0 0 1
46. 1 0 0 0 0 0 1
46. 1 0 0 0 0 0 1
46. 1 0 0 0 0 0 1
46. 1 0 0 0 0 0 1
46. 0 0 0 0 0 1 1
52. 0 0 0 0 0 0 0
52. 0 0 0 0 0 0 0
52. 0 0 0 0 0 0 0
52. 0 0 0 0 0 0 0
52. 0 0 0 0 0 0 0
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