The $3^{\text {rd }}$ US Ersatz Math Olympiad
 Solutions and Results

Evan Chen

24 January 2024

Contents

1 Summary 3
1.1 Overview of the 3rd USEMO 3
1.2 Thanks 3
1.2.1 Proposers of problems 3
1.2.2 Reviewers 3
1.2.3 Graders 3
2 Results 4
2.1 Top Scores 4
2.2 Special awards 4
2.3 Honorable mentions 4
2.4 Distinction 5
3 Solutions to the Problems 6
3.1 Solution to USEMO1, proposed by Holden Mui 6
3.2 Solution to USEMO2, proposed by Ankan Bhattacharya 8
3.3 Solution to USEMO3, proposed by Ankan Bhattacharya 11
3.4 Solution to USEMO4, proposed by Sayandeep Shee 13
3.5 Solution to USEMO5, proposed by Bhavya Tiwari 15
3.6 Solution to USEMO6, proposed by Nikolai Beluhov 16
4 Marking schemes 18
4.1 Rubric for USEMO1 18
4.2 Rubric for USEMO2 18
4.3 Rubric for USEMO3 19
4.4 Rubric for USEMO 4 19
4.5 Rubric for USEMO 5 20
4.6 Rubric for USEMO 6 21
5 Statistics 22
5.1 Summary of scores for USEMO 2021 22
5.2 Problem statistics for USEMO 2021 22
5.3 Rankings for USEMO 2021 22
5.4 Histogram for USEMO 2021 23
5.5 Full stats for USEMO 2021 23

ـ. Summary

§1.1 Overview of the 3rd USEMO

The third USEMO was held on October $30-31,2021$. A total of 85 students took part. This is a smaller number than usual, in part due to technical issues at the start of the competition, but because MMATHS conflicted with USEMO, again.

Nonetheless, the problem quality was high, and I am pleased with all six problems that made the exam. I hope you enjoyed them as much as I did.

§1.2 Thanks

I am once again grateful to many individuals who helped make this competition possible.
I would like to thank the Art of Problem Solving for offering the software and platform for us to run the competition. Special thanks to Deven who was my main contact for this iteration.

§1.2.1 Proposers of problems

I thank Ahaan Chatterjee, Ankan Bhattacharya, Ankit Bisain, Bhavya Tiwari, Félix Moreno Peñarrubia, Hans Yu, Holden Mui, Kazi Aryan Amin, Kornpholkrit Weraarchakul, Lincoln Liu, Luke Gustafson, Luke Robitaille, Lum Jerliu, Luu Cong Dong, Man Keat, Mohammed Imran, Nikolai Beluhov, Oliver Hayman, Orestis Lignos, Pranjal Srivastava, Santiago Rodriguez Sierra, Sayandeep Shee, Stanve Avrilium, Valentio Iverson, Xiaoyu Chen, for contributing 39 problem proposals.

§1.2.2 Reviewers

Thank you to the review team:, Andrew Gu, Ankit Bisain, Nikolai Beluhov, Sanjana Das, Tristan Shin, who submitted feedback the packet, and Michael Ren and Ankan Bhattacharya for test-solving.

§1.2.3 Graders

Thanks to everyone who graded at least one paper: Aady Nagarajan, Ankan Bhattacharya, Archit Manas, Arifa Alam, Arjun Arunachalam, Arjun Gupta, Atul Shatavart Nadig, Azmi, Daniel Naylor, David Schmitz, Debayu Chakraborti, Dylan Dalida, Ejaife Obukome, Ejaife ogheneobukome, Elijah Liu, Ezra Guerrero, Guilherme Zeus Dantas e Moura, Hongzhou Lin, Hu Man Keat, Iliyas Bashir Noman, Immanuel Josiah Balete, IndoMathXdZ, Juhi Bhargava, Kanishk Sharma, Kevin Snu, Kevin, Konstantinos Konstantinidis, Leon Lau, Leonardo Wang, Lincoln Liu, Luke Gustafson, Luke Robitaille, Max Chornyi, Milind Pattanaik, Ngo Quy Dang. Noah Walsh, Non, Nurdaulet Absattarov, Oliver Hayman, Parasaran Venugopal, Pranav Choudhary, Rafael Martins Ruas, Rhys Lewis, Ricky Bhanja, Rushil Mathur, Sam, Sanjana Das, Santiago Rodriguez, Shadman Shahriyar Shuvo, Soumitro Shovon Dwip, Srijon Sarkar, Sunaina Pati, Taes Padhihary, Tilek Askerbekov, Valentio Iverson, Worrawat Rungaramsin, Zawadul Hoque,

Results

If you won one of the seven awards, please reach out to usemo@evanchen.cc to claim your prize!

§2.1 Top Scores

Congratulations to the top three scorers, who win the right to propose problems to future instances of USEMO.

1st place Eric Shen (35 points)
2nd place Ram Goel (24 points)
3rd place Kristie Sue (23 points)

- ...Tied with Raymond Feng (23 points)

The organizers would also like to commend Eric Shen for an ingenious alternative solution to USEMO3.

§2.2 Special awards

See the Rules for a description of how these are awarded. For the purposes of awarding monetary prizes, ties are broken more or less arbitrarily by considering the presentation of elegance of solutions (which is obviously subjective). When this occurs, the names of tied students are noted as well.

Top female Grace Wang (22 points)
Youth prize Warren Bei (22 points)
Top day 1 Rishabh Das (15 points on Day 1)
Top day 2 Raymond Feng (9 points on Day 2)

§2.3 Honorable mentions

This year we award Honorable Mention to anyone scoring at least 20 points (who is not in the top three already). The HM's are listed below in alphabetical order.

Alexander Wang
David Dong
Eddie Wei
Edward Yu
Grace Wang
Jeffrey Chen

Kavan Doctor
Krishna Pothapragada
Matthew Chen
Maximus Lu
Paul Hamrick
Raymond Feng
Rishabh Das
Ryan Li
Samuel Zhou
Warren Bei
Wilbert

§2.4 Distinction

We award Distinction to anyone scoring at least 14 points (two fully solved problems). The Distinction awards are listed below in alphabetical order.

Advaith Avadhanam
Alston Xu
Ambokinho
Carlos Rodriguez
Derek Liu
Edward Aragon
Elliott Liu
Grant Blitz
Jason Mao
Karthik Vedula
Kevin Min
Lerchen Zhong
Rohan Das
Ryan Yang
Susie Lu
Yichen Xiao
Zifan Wang

3 solutions to the Problems

§3.1 Solution to USEMO1, proposed by Holden Mui

Problem statement

Let n be a positive integer and consider an $n \times n$ grid of real numbers. Determine the greatest possible number of cells c in the grid such that the entry in c is both strictly greater than the average of c 's column and strictly less than the average of c 's row.

The answer is $(n-1)^{2}$. An example is given by the following construction, shown for $n=5$, which generalizes readily. Here, the lower-left $(n-1) \times(n-1)$ square gives a bound.

$$
\left[\begin{array}{ccccc}
-1 & -1 & -1 & -1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

We give two proofs of the bound. Call a cell good if it satisfies the condition of the problem.

- Coloring proof, from the author. We now prove that no more than $(n-1)^{2}$ squares can be good. The cells are weakly ordered by \geq (there may be some ties due to equal elements); we arbitrarily extend it to a total ordering \gtrdot, breaking all ties. (Alternatively, one can phrase this as perturbing the grid entries in such a way that they become distinct.)
- For every column, we color red the \gtrdot-smallest element in that column.
- For every row, we color blue the \gtrdot-largest element in that row.

This means that there are exactly n red and n blue cells. Note that these cells are never good.

Claim - There is at most one cell that is both red and blue.

Proof. Assume for contradiction that P_{1} and P_{2} are two "purple" cells (both red and blue). Look at the resulting picture

$$
\left[\begin{array}{cc}
P_{1} & x \\
y & P_{2}
\end{array}\right] .
$$

By construction, we have $P_{1} \gtrdot x \gtrdot P_{2} \gtrdot y \gtrdot P_{1}$. This is a contradiction.
Thus at least $2 n-1$ cells cannot be good. This proves the bound.

IT Proof using König's theorem, from Ankan Bhattacharya. This proof is based on the following additional claim:

Claim - No column/row can be all-good, and no transversal can be all-good.

Proof. The first part is obvious. As for the second, let r_{i} and c_{j} denote the column sums. If cell (i, j) is good, then

$$
r_{i}<a_{i, j}<c_{j} .
$$

If we have a good transversal, summing the inequality $r_{i}<c_{j}$ over the cells in this transversal gives a contradiction (as $\sum r_{\bullet}=\sum c_{\bullet}$).

This claim alone is enough to imply the desired bound.
Claim - There exists a choice of a columns and b rows, with $a+b=n+1$, such that no good cells lie on the intersection of the columns and rows.

Proof. Follows by König's theorem, and the previous claim. Alternatively, quote the contrapositive of Hall's marriage theorem: because there was no all-good transversal, there must be a set of a columns with more than $n-a$ "compatible" rows.

Suppose $a \leq \frac{n}{2} \leq b$; the other case is similar. Now we bound:

- The $a \times b$ cells of the claim are given to be all non-good.
- In the $n-a=b-1$ remaining rows, there is at least one more non-good cell.

Thus the number of non-good cells is at least

$$
a b+(b-1)=(a+1) b-1 \geq 2 \cdot n-1=n^{2}-(n-1)^{2}
$$

and so there are at most $(n-1)^{2}$ good cells.

§3.2 Solution to USEMO2, proposed by Ankan Bhattacharya

Problem statement

Find all integers $n \geq 1$ such that $2^{n}-1$ has exactly n positive integer divisors.

The valid n are $1,2,4,6,8,16,32$. They can be verified to work through inspection, using the well known fact that the Fermat prime $F_{i}=2^{2^{i}}+1$ is indeed prime for $i=0,1, \ldots, 4$ (but not prime when $i=5$).

We turn to the proof that these are the only valid values of n. In both solutions that follow, $d(n)$ is the divisor counting function.

【 First approach (from author). Let d be the divisor count function. Now suppose n works, and write $n=2^{k} m$ with m odd. Observe that

$$
2^{n}-1=\left(2^{m}-1\right)\left(2^{m}+1\right)\left(2^{2 m}+1\right) \cdots\left(2^{2^{k-1} m}+1\right),
$$

and all $k+1$ factors on the RHS are pairwise coprime. In particular,

$$
d\left(2^{m}-1\right) d\left(2^{m}+1\right) d\left(2^{2 m}+1\right) \cdots d\left(2^{2^{k-1} m}+1\right)=2^{k} m
$$

Recall the following fact, which follows from Mihǎilescu's theorem.

Lemma

$2^{r}-1$ is a square if and only if $r=1$, and $2^{r}+1$ is a square if and only if $r=3$.
Now, if $m \geq 5$, then all $k+1$ factors on the LHS are even, a contradiction. Thus $m \leq 3$. We deal with both cases.

If $m=1$, then the inequalities

$$
\begin{gathered}
d\left(2^{2^{0}}-1\right)=1 \\
d\left(2^{2^{0}}+1\right) \geq 2 \\
d\left(2^{2^{1}}+1\right) \geq 2 \\
\vdots \\
d\left(2^{2^{k-1}}+1\right) \geq 2
\end{gathered}
$$

mean that it is necessary and sufficient for all of $2^{2^{0}}+1,2^{2^{1}}+1, \ldots, 2^{2^{k-1}}+1$ to be prime. As mentioned at the start of the problem, this happens if and only if $k \leq 5$, giving the answers $n \in\{1,2,4,8,16,32\}$.

If $m=3$, then the inequalities

$$
\begin{aligned}
d\left(2^{3 \cdot 2^{0}}-1\right) & =2 \\
d\left(2^{3 \cdot 2^{0}}+1\right) & =3 \\
d\left(2^{3 \cdot 2^{1}}+1\right) & \geq 4 \\
\vdots & \\
d\left(2^{3 \cdot 2^{k-1}}+1\right) & \geq 4
\end{aligned}
$$

mean that $k \geq 2$ does not lead to a solution. Thus $k \leq 1$, and the only valid possibility turns out to be $n=6$.

Consolidating both cases, we obtain the claimed answer $n \in\{1,2,4,6,8,16,32\}$.

Second approach using Zsigmondy (suggested by reviewers). There are several variations of this Zsigmondy solution; we present the approach found by Nikolai Beluhov. Assume $n \geq 7$, and let $n=\prod_{1}^{m} p_{i}^{e_{i}}$ be the prime factorization with $e_{i}>0$ for each i. Define the numbers

$$
\begin{aligned}
T_{1} & =2^{p_{1}^{e_{1}}}-1 \\
T_{2} & =2^{p_{2}^{e_{2}}}-1 \\
& \vdots \\
T_{m} & =2^{p_{m}^{e_{m}}}-1 .
\end{aligned}
$$

We are going to use two facts about T_{i}.
Claim - The T_{i} are pairwise relatively prime and

$$
\prod_{i=1}^{m} T_{i} \mid 2^{n}-1
$$

Proof. Each T_{i} divides $2^{n}-1$, and the relatively prime part follows from the identity $\operatorname{gcd}\left(2^{x}-1,2^{y}-1\right)=2^{\operatorname{gcd}(x, y)}-1$.

Claim - The number T_{i} has at least e_{i} distinct prime factors.
Proof. This follows from Zsigmondy's theorem: each successive quotient $\left(2^{p^{k+1}}-1\right) /\left(2^{p^{k}}-\right.$

1) has a new prime factor.

Claim (Main claim) - Assume n satisfies the problem conditions. Then both the previous claims are sharp in the following sense: each T_{i} has exactly e_{i} distinct prime divisors, and

$$
\left\{\text { primes dividing } \prod_{i=1}^{m} T_{i}\right\}=\left\{\text { primes dividing } 2^{n}-1\right\}
$$

Proof. Rather than try to give a size contradiction directly from here, the idea is to define an ancillary function

$$
s(x)=\sum_{p \text { prime }} \nu_{p}(x)
$$

which computes the sum of the exponents in the prime factorization. For example

$$
s(n)=e_{1}+e_{2}+\cdots+e_{m} .
$$

On the other hand, using the earlier claim, we get

$$
s\left(d\left(2^{n}-1\right)\right) \geq s\left(d\left(\prod T_{i}\right)\right) \geq e_{1}+e_{2}+\cdots+e_{m}=s(n)
$$

But we were told that $d\left(2^{n}-1\right)=n$; hence equality holds in all our estimates, as needed.

At this point, we may conclude directly that $m=1$ in any solution; indeed if $m \geq 2$ and $n \geq 7$, Zsigmondy's theorem promises a primitive prime divisor of $2^{n}-1$ not dividing any of the T_{i}.

Now suppose $n=p^{e}$, and $d\left(2^{p^{e}}-1\right)=n=p^{e}$. Since $2^{p^{e}}-1$ has exactly e distinct prime divisors, this can only happen if in fact

$$
2^{p^{e}}-1=q_{1}^{p-1} q_{2}^{p-1} \ldots q_{e}^{p-1}
$$

for some distinct primes $q_{1}, q_{2}, \ldots, q_{e}$. This is impossible modulo 4 unless $p=2$.
So we are left with just the case $n=2^{e}$, and need to prove $e \leq 5$. The proof consists of simply remarking that $2^{2^{5}}+1$ is known to not be prime, and hence for $e \geq 6$ the number $2^{2^{e}}-1$ always has at least $e+1$ distinct prime factors.

§3.3 Solution to USEMO3, proposed by Ankan Bhattacharya

Problem statement

Let $A_{1} C_{2} B_{1} A_{2} C_{1} B_{2}$ be an equilateral hexagon. Let O_{1} and H_{1} denote the circumcenter and orthocenter of $\triangle A_{1} B_{1} C_{1}$, and let O_{2} and H_{2} denote the circumcenter and orthocenter of $\triangle A_{2} B_{2} C_{2}$. Suppose that $O_{1} \neq O_{2}$ and $H_{1} \neq H_{2}$. Prove that the lines $O_{1} O_{2}$ and $H_{1} H_{2}$ are either parallel or coincide.

Let $\triangle X_{1} Y_{1} Z_{1}$ and $\triangle X_{2} Y_{2} Z_{2}$ be the medial triangles of $\triangle A_{1} B_{1} C_{1}$ and $\triangle A_{2} B_{2} C_{2}$. The first simple observation is as follows.

Claim - $Y_{1}, Z_{1}, Y_{2}, Z_{2}$ are concyclic.
Proof. The distance from each of $Y_{1}, Z_{1}, Y_{2}, Z_{2}$ to the midpoint of $\overline{A_{1} A_{2}}$ is half the side length of the hexagon.

Hence by radical axis argument, we obtain that $\overline{X_{1} X_{2}}, \overline{Y_{1} Y_{2}}, \overline{Z_{1} Z_{2}}$ are concurrent, except possibly when all six points lie on a circle. In this case, $\triangle A_{1} B_{1} C_{1}$ and $\triangle A_{2} B_{2} C_{2}$ share the same nine-point center, so clearly $\overline{O_{1} O_{2}} \| \overline{H_{1} H_{2}}$. So we will assume going forward that ($X_{1} Y_{1} Z_{1}$) and ($X_{2} Y_{2} Z_{2}$) are distinct circles.

The heart of the proof revolves around the following two claims.

Claim (Perspectivity) - The two triangles $\triangle X_{1} Y_{1} Z_{1}$ and $\triangle X_{2} Y_{2} Z_{2}$ are perspective at some point K.

Proof. As mentioned above, $\overline{X_{1} X_{2}}, \overline{Y_{1} Y_{2}}, \overline{Z_{1} Z_{2}}$ are concurrent.
Let N_{1} and G_{1} be the circumcenter and centroid of $\triangle X_{1} Y_{1} Z_{1}$; define N_{2} and G_{2} similarly.

Claim (Orthology) - Triangles $\triangle X_{1} Y_{1} Z_{1}$ and $\triangle X_{2} Y_{2} Z_{2}$ are orthologic. In fact, the orthology center S_{1} is the image of O_{2} under a homothety centered at G_{1} with ratio $-\frac{1}{2}$.

Proof. Since the mentioned homothety takes $\overline{A_{1} O_{2}} \rightarrow \overline{X_{1} S_{1}}$, so

$$
\overline{Y_{2} Z_{2}}\left\|\overline{B_{2} C_{2}} \perp \overline{A_{1} O_{2}}\right\| \overline{X_{1} S_{1}}
$$

as desired.
We have obtained that $\triangle X_{1} Y_{1} Z_{1}$ and $\triangle X_{2} Y_{2} Z_{2}$ are both orthologic (with centers S_{1} and S_{2}) and perspective (through K). Hence it follows by Sondat's theorem that S_{1}, S_{2}, and K lie on a line perpendicular to the perspectrix.

To finish, we follow up with two more claims:

Claim (Perspectrix is radical axis) - The perspectrix of the two triangles is exactly the radical axis of their circumcircles, hence perpendicular to $\overline{N_{1} N_{2}}$.

Proof. This follows from the earlier observation that $Y_{1}, Y_{2}, Z_{1}, Z_{2}$ was cyclic, etc.

Claim (Degenerate parallelogram) - $N_{1} S_{1} N_{2} S_{2}$ is a (possibly degenerate) parallelogram.

Proof. Because $\overrightarrow{S_{1} N_{2}} \stackrel{O_{2}}{=} \frac{3}{2} \overrightarrow{G_{1} G_{2}} \stackrel{O_{1}}{=} \overrightarrow{N_{1} S_{2}}$.
In this way we can conclude that $\overline{N_{1} N_{2}} \| \overline{S_{1} S_{2}}$ through the former claim, but they have the same midpoint by the latter claim, so ultimately all N_{i} and S_{i} are collinear.

Finally, note that

$$
\overline{N_{1} N_{2}}\left\|\overline{N_{1} S_{1}}\right\|^{G_{1}} \overline{O_{1} O_{2}}
$$

It easily follows that $\overline{O_{1} O_{2}} \| \overline{H_{1} H_{2}}$, as wanted.
Remark. An amusing corollary of the above solution is the following:
Assuming $A_{1} C_{2} B_{1} A_{2} C_{1} B_{2}$ is not self-intersecting, the midpoints of $\overline{A_{1} A_{2}}, \overline{B_{1} B_{2}}$, $\overline{C_{1} C_{2}}$ cannot be collinear (unless two of them coincide).
To see this, let M_{A}, M_{B}, M_{C} be said midpoints. If they are different and lie on line ℓ, then $M_{B} X_{1} M_{C} X_{2}$ is a rhombus with side length $\frac{1}{2} s$, so X_{1} and X_{2} are reflections in ℓ.

Similarly, $\triangle X_{1} Y_{1} Z_{1}$ and $\triangle X_{2} Y_{2} Z_{2}$ are reflections in ℓ, so $\triangle A_{1} B_{1} C_{1}$ and $\triangle A_{2} B_{2} C_{2}$ are as well. This is not possible if $A_{1} C_{2} B_{1} A_{2} C_{1} B_{2}$ is not self-intersecting, because some side will intersect ℓ : then its opposite side will intersect this side at the intersection point.

§3.4 Solution to USEMO4, proposed by Sayandeep Shee

Problem statement

Let $A B C$ be a triangle with circumcircle ω, and let X be the reflection of A in B. Line $C X$ meets ω again at D. Lines $B D$ and $A C$ meet at E, and lines $A D$ and $B C$ meet at F. Let M and N denote the midpoints of $A B$ and $A C$.

Can line $E F$ share a point with the circumcircle of triangle $A M N$?

The answer is no, they never intersect.
【 Classical solution, by author. Let P denote the midpoint of $\overline{A D}$, which

- lies on $\overline{B N}$, since $\overline{B N} \| \overline{C X}$; and
- lies on $(A M N)$, since it's homothetic to $(A B C)$ through A with factor $\frac{1}{2}$.

Now, note that

$$
\begin{aligned}
& \measuredangle F B P=\measuredangle C B N=\measuredangle B C D=\measuredangle B A D=\measuredangle B A F \Longrightarrow F B^{2}=F P \cdot F A \\
& \measuredangle E B N=\measuredangle E D C=\measuredangle B D C=\measuredangle B A C=\measuredangle B A E \Longrightarrow E B^{2}=E N \cdot E A .
\end{aligned}
$$

This means that line $E F$ is the radical axis of the circle centered at B with radius zero, and the circumcircle of triangle $A M N$. Since B obviously lies outside $(A M N)$, the disjointness conclusion follows.

【 Projective solution, by Ankit Bisain. In this approach we are still going to prove that $\overline{E F}$ is the radical axis of $(A M N)$ and the circle of radius zero at B, but we are not going to use the point P, or even points E and F.

Instead, let $Y=\overline{E F} \cap \overline{A B}$, which by Brokard's theorem on $A B D C$ satisfies $(A B ; X Y)=$ -1 . Since $X B=X A$, it follows that $A Y: Y B=2$. From here it is straightforward to
verify that

$$
Y B^{2}=\frac{1}{9} A B^{2}=Y M \cdot Y A .
$$

Thus Y lies on the radical axis.
Finally, by Brokard's theorem again, if O is the center of ω then $\overline{O X} \perp \overline{E F}$. Taking a homothety with scale factor 2 at A, it follows that the line through B and the center of $(A M N)$ is perpendicular to $\overline{E F}$.

Since $\overline{E F}$ contains Y, it now follows that $\overline{E F}$ is the radical axis, as claimed.
【 Solution with inversion, projective, and Cartesian coordinates, by Ankan Bhattacharya. In what follows, let O be the center of ω. Note that Brokard's theorem gives that $\overline{E F}$ is the polar of X.

Note that since none of E, F, X are points at infinity, O is different from all three.
We consider inversion in ω to eliminate the polar:

- The circumcircle of $\triangle A M N$, i.e. the circle with diameter $\overline{A O}$, is sent to the line ℓ tangent to ω at A.
- The line $E F$, as the polar of X, is sent to the circle with diameter $\overline{O X}$. (It is indeed a circle, because O does not lie on line $E F$.)

Thus, if the posed question is true, then we see that ℓ intersects ($O X$). We claim this is impossible.

Establish Cartesian coordinates with $A=(0,0)$ and $O=(2,0)$, so ℓ is the y-axis. Let T be the center of $(O X)$: the midpoint of $\overline{O X}$. Observe:

- B lies on the circle with center $(2,0)$ and radius 2.
- X lies on the circle with center $(4,0)$ and radius 4 .
- T lies on the circle with center $(3,0)$ and radius 2 .

Thus, let the coordinates of T be (x, y), with $(x-3)^{2}+y^{2}=4$. The intersection of ℓ and ($O X$) being nonempty is equivalent to

$$
\begin{aligned}
& d(T, \ell)^{2} \leq O T^{2} \\
& \Longleftrightarrow x^{2} \leq(x-2)^{2}+y^{2} \\
& \Longleftrightarrow x^{2} \leq(x-2)^{2}+\left[4-(x-3)^{2}\right] \\
\Longleftrightarrow & (x-1)^{2} \leq 0,
\end{aligned}
$$

or $x=1$ (which forces $y=0$); i.e. $T=(1,0)$. However, this forces

$$
B=(0,0)=A,
$$

which is not permitted. Thus, line ℓ cannot share a point with $(O X)$, and so line $E F$ cannot share a point with $(A M N)$.

§3.5 Solution to USEMO5, proposed by Bhavya Tiwari

Problem statement

Given a polynomial $p(x)$ with real coefficients, we denote by $S(p)$ the sum of the squares of its coefficients. For example, $S(20 x+21)=20^{2}+21^{2}=841$.

Prove that if $f(x), g(x)$, and $h(x)$ are polynomials with real coefficients satisfying the identity $f(x) \cdot g(x)=h(x)^{2}$, then

$$
S(f) \cdot S(g) \geq S(h)^{2}
$$

The following write-up is due to Ankan Bhattacharya, and is the same as the solution proposed by the author.

Claim - Let p be a polynomial with real coefficients, and $n>\operatorname{deg} p$ an integer. Then

$$
S(p)=\frac{1}{n} \sum_{k=0}^{n-1}\left|p\left(e^{2 \pi i k / n}\right)\right|^{2}
$$

Proof. Note that

$$
\left|p\left(e^{2 \pi i k / n}\right)\right|^{2}=p\left(e^{2 \pi i k / n}\right) \cdot p\left(e^{-2 \pi i k / n}\right)
$$

so if we define $q(x)=p(x) p(1 / x)$, the right-hand side is the sum of q across the nth roots of unity.

Applying a roots of unity filter, the right-hand side is the constant coefficient of $q(x)$. But that constant coefficient is exactly equal to $S(p)$.

To solve the problem, choose $n>\max \{\operatorname{deg} f, \operatorname{deg} g, \operatorname{deg} h\}$, set $\omega=e^{2 \pi i / n}$, and apply the key claim to all three to get that the desired inequality is equivalent to

$$
\begin{aligned}
& {\left[\frac{1}{n} \sum\left|f\left(\omega^{k}\right)\right|^{2}\right] \cdot\left[\frac{1}{n} \sum\left|g\left(\omega^{k}\right)\right|^{2}\right] \geq\left[\frac{1}{n} \sum\left|h\left(\omega^{k}\right)\right|^{2}\right]^{2}} \\
& \Longleftrightarrow\left[\sum\left|f\left(\omega^{k}\right)\right|^{2}\right] \cdot\left[\sum\left|g\left(\omega^{k}\right)\right|^{2}\right] \geq\left[\sum\left|f\left(\omega^{k}\right)\right| \cdot\left|g\left(\omega^{k}\right)\right|\right]^{2}
\end{aligned}
$$

This is just Cauchy-Schwarz, so we are done.
Remark (Continuous version of above solution). To avoid the arbitrary choice of parameter n, one can make the same argument to show that for any $p \in \mathbb{R}[x]$,

$$
S(p)=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|p\left(e^{i x}\right)\right|^{2} d x
$$

Using Cauchy's inequality for integrals, we obtain a continuous version of the above solution. However, this is technically out of scope for high-school olympiad, despite the fact it is really just the limit as $n \rightarrow \infty$ of the above solution.

§3.6 Solution to USEMO6, proposed by Nikolai Beluhov

Problem statement

A bagel is a loop of $2 a+2 b+4$ unit squares which can be obtained by cutting a concentric $a \times b$ hole out of an $(a+2) \times(b+2)$ rectangle, for some positive integers a and b. (The side of length a of the hole is parallel to the side of length $a+2$ of the rectangle.)

Consider an infinite grid of unit square cells. For each even integer $n \geq 8$, a bakery of order n is a finite set of cells S such that, for every n-cell bagel B in the grid, there exists a congruent copy of B all of whose cells are in S. (The copy can be translated and rotated.) We denote by $f(n)$ the smallest possible number of cells in a bakery of order n.

Find a real number α such that, for all sufficiently large even integers $n \geq 8$, we have

$$
\frac{1}{100}<\frac{f(n)}{n^{\alpha}}<100 .
$$

The answer is $\alpha=3 / 2$.
In what follows, " Y is about X " means that $Y=[1+o(1)] X$. Equivalently, $\lim _{n \rightarrow \infty} Y / X=$ 1. Intuitively, both of these say that X and Y become closer and closer together as n grows. This is fine for the problem since only sufficiently large n are involved.

- Bound. First we prove that every bakery S of order n contains at least about $n^{3 / 2} / 8$ cells.

We say that a bagel is horizontal or vertical depending on the orientation of its pair of longer sides. (A square bagel is both.) For each $a<b$ with $2 a+2 b+4=n$, take one bagel in S whose hole is of size either $a \times b$ or $b \times a$. Without loss of generality, at least about $n / 8$ of our bagels are horizontal.

Say that there are a total of k rows which contain a longer side of at least one of our horizontal bagels. Note that the shorter side length of a horizontal bagel depends only on the distance between the rows of its longer sides. Since the shorter side lengths of all of our bagels are pairwise distinct, we obtain that $\binom{k}{2}$ is at least about $n / 8$. Consequently, k is at least about $\sqrt{n} / 2$.

On the other hand, each such row contains at least about $n / 4$ cells in S. Therefore, $|S|$ is at least about $n^{3 / 2} / 8$, as needed.

【 Construction. To complete the solution, we construct a bakery S of order n with at most about $\sqrt{2} \cdot n^{3 / 2}$ cells. Define

$$
\ell=\lceil\sqrt{n / 2}\rceil \quad \text { and } \quad D=\left\{-\ell^{2},-(\ell-1) \ell, \ldots,-3 \ell,-2 \ell,-\ell, 0,1,2, \ldots, \ell\right\} .
$$

Then $|D|$ is about $\sqrt{2 n}$.
We refer to the set D as a ruler in the sense that for any $1 \leq m<n / 2$, there are x_{1} and x_{2} in D with $x_{2}-x_{1}=m$. Indeed, one lets x_{2} be the remainder when m is divided by ℓ, so that $x_{1}=x_{2}-m \leq 0$ is a multiple of ℓ.

Now, if we let $T=\left\{-\ell^{2},-\ell^{2}+1, \ldots, \ell\right\}$ then we may define

$$
S=(D \times T) \cup(T \times D) .
$$

An illustration below is given for $\ell=5$.

Note that $|S|$ is at most about $n|D|$, that is, at most about $\sqrt{2} \cdot n^{3 / 2}$.
Claim - The set S is a bakery of order n.
Proof. Let a and b be any positive integers with $2 a+2 b+4=n$. By the choice of D, there are x_{1} and x_{2} in D such that $x_{2}-x_{1}=a+1$, as well as y_{1} and y_{2} in D such that $y_{2}-y_{1}=b+1$. Then the bagel with opposite corner cells $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ has a hole with side lengths a and b and all of its cells are in S, as needed.

Remark. Let us call a ruler sparse when a lot of its marks are missing but we can still measure out each one of the distances $1,2, \ldots, N$. Then for the set D in the solution essentially we need a sparse ruler with about $c \sqrt{N}$ marks, for some reasonably small positive real constant c. The construction above is simple but also far from optimal. Other constructions are known which are more complicated but yield smaller values of c. See, for example, Ed Pegg Jr, Hitting All The Marks.

4
 Marking schemes

§4.1 Rubric for USEMO1

In all approaches, $\mathbf{1}$ point is awarded for a correct construction, and $\mathbf{6}$ points for the proof that $(n-1)^{2}$ is best possible; hence $1+6=7$. No points are awarded for answer alone.

The 6 points can be decomposed according to the following approaches. All the items, including the deductions, are additive within each approach. But the marks from different approaches are not additive.

Finally, one point is deducted from a 7^{-}solution if the proof is only correct when all the cells are distinct, and the student fails to deal with situations in which a subset of cells have the same number. (This is quite forgiving.)

\| First approach

- 1 point for the claim that there exists only 1 cell which is the largest and smallest in its row and column respectively
- 5 points for the proof and by showing that otherwise implies a contradictory chain of inequalities.

\| Second Approach

- 2 points for proving that not all cells in a row/column and no transversal can satisfy the problem condition
- 2 points for proving that there exists a choice of a columns and b rows such that $a+b=n+1$
- 2 points for correctly bounding the number of sapphire cells

§4.2 Rubric for USEMO2

In this rubric, none of the items are additive: neither the positive items nor the deductions. Hence an incomplete solution receives the largest positive item, while a complete solution receives 7 minus the largest deduction. Deductions do not apply to solutions scoring at most 2 points.

Common items for both solutions

- $\mathbf{0}$ points for correct solution set.
- 0 points for proving that special cases of n (odd n, or prime power n) don't work.
- -1 points for not mentioning anywhere that all n in the solution set work.
- -1 points for a solution which claims that all powers of 2 work (but resolves the other cases correctly). (Stating that it's well-known F_{i} is prime for $i=1, \ldots, 4$ but not 5 , where F_{i} are the Fermat primes, counts as a correct proof.)
- -1 points for a solution which has an incorrect solution set but is otherwise correct (unless the only error is missing $n=1$, in which case there is no deduction).

First official solution

- 0 points for just writing down $2^{n}-1=\left(2^{m}-1\right)\left(2^{m}+1\right)\left(2^{2 m}+1\right) \cdots$.
- 2 points for proving that one of $2^{m}-1,2^{m}+1,2^{2 m}+1, \ldots$ is a square.
- 3 points for proving that $m=1$ or 3 .
- 7 points for a complete solution.
- -1 points for an incorrect proof, or statement without proof, that $2^{r}-1$ is only a square when $r=1$, and/or that $2^{r}+1$ is only a square when $r=3$, if the solution is otherwise correct. (Citing Catalan/Mihailescu counts as a correct proof.)

Second official solution

- 0 points for just writing down a result of Zsigmondy (that $2^{n}-1$ has at least $e_{1}+\cdots+e_{m}$, or $d(n)-2$, distinct prime factors).
- 2 points for proving that equality holds in the estimate $s\left(d\left(2^{n}-1\right)\right) \geq \cdots$ or something similar.
- 3 points for proving n is 6 or a prime power.
- 7 points for a complete solution.

§4.3 Rubric for USEMO3

Because the number of solutions with any substantial progress was low, there was no official rubric written for this problem. Instead, the graders first identified all papers that were plausible candidates for partial marks, if any. Then they discussed each individual paper case by case.

§4.4 Rubric for USEMO 4

The following things might happen:
(a) It is stated/conjectured that answer is NO.
(b) It is mentioned that $\overline{E F}$ is the polar of X wrt ω.
(c) Point $K=\overline{E F} \cap \overline{A B}$ is introduced.
(d) It is mentioned that $\frac{A K}{K B}=2$.
(e) Center of O of ω is defined.
(f) As we only need to show distance between midpoint of segment $A O$ and line $E F$ is $R / 2$ (where R is the radius of ω), so it is mentioned that it suffices to show

$$
\begin{equation*}
d(A, \overline{E F})+d(O, \overline{E F})>R \tag{1}
\end{equation*}
$$

(g) Now in the above step, we require that A, O lie on the same side of line $E F$. So some students might not mention that.
(h) Proving (1).

Now we can give the following marks:
(i) $\mathbf{0}$ marks for only (a), (b).
(ii) $\mathbf{1}$ marks for $(c),(d)$.
(iii) 2 marks for mentioning (1) without doing the mistake in (g) and also proving $d(A, \overline{E F})=\frac{d(X, \overline{E F})}{2}$.
(iv) $\mathbf{1}$ marks If mistake in (g) is also done in (f).
(v) $\mathbf{6}$ marks If the solution is correct till end but mistake in (g) is done.
(vi) $\mathbf{7}$ marks for a perfect solution.

§4.5 Rubric for USEMO 5

Most solutions probably are worth 0 or 7 points. As always there will be a 1 point deduction to essentially complete solutions with minor errors that could be easily be fixed.

Roots of unity solution

The following items apply but are not additive.

- 0 points for proving the inequality for special cases. For example when f is a quadratic polynomial, cubic polynomial etc.
- 0 points for expressing the polynomials as $f(x)=p(x)^{2} r(x), g(x)=q(x)^{2} r(x)$ and $h(x)=p(x) q(x) r(x)$.
- 1 point for proving that $s(p)$ is equal to the independent coefficient of $p(x) p(1 / x)$
- 5 points for using a roots of unity filter to characterize $S(p)$ as

$$
S(p)=\frac{1}{n} \sum_{i=0}^{n-1}\left|p\left(e^{2 \pi i k / n}\right)\right|^{2} \quad \text { or } \quad S(p)=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|p\left(e^{i x}\right)\right|^{2} \mathrm{~d} x
$$

- 7 points for a complete solution

As always there will be a 1 point deduction to essentially complete solutions with minor errors that could be easily be fixed such as:

- not picking a big enough n when proving or applying the discrete characterisation of $S(p)$.

Coefficient manipulation solution

The following items apply but are not additive.

- 0 points for proving the inequality for special cases. For example when f is a quadratic polynomial, cubic polynomial etc.
- 0 points for expressing the polynomials as $f(x)=p(x)^{2} r(x), g(x)=q(x)^{2} r(x)$ and $h(x)=p(x) q(x) r(x)$.
- 1 point for proving that $s(p)$ is equal to the independent coefficient of $p(x) p(1 / x)$
- 5 points for proving the identities

$$
\begin{aligned}
& S\left(r(x) p(x)^{2}\right)=\sum_{k}\left(r(x) p(x) p\left(\frac{1}{x}\right)\left[x^{k}\right]\right)^{2} \\
& S\left(r(x) q(x)^{2}\right)=\sum_{k}\left(r\left(\frac{1}{x}\right) q(x) q\left(\frac{1}{x}\right)\left[x^{-k}\right]\right)^{2}
\end{aligned}
$$

- 7 points for a complete solution

§4.6 Rubric for USEMO 6

No points are awarded for the answer $\alpha=3 / 2$ alone. However, the following items are possible:

- A complete costruction is worth 2 points. A student can earn 1 point of this item for stating the answer $\alpha=3 / 2$ roughly describing the idea of the construction (that is, to find a "ruler" D, and hope that the ruler has about $\Theta(\sqrt{n})$ numbers). This can be given even if the student has no idea how to actually find such a ruler.
- Meanwhile, proving the lower bound $\alpha \geq 3 / 2$ is worth 2 points.

These two items are additive, meaning $1+2=3$ while $2+2=7$.

Statistics

§5.1 Summary of scores for USEMO 2021

N	83	1st Q	3	Max	35
μ	11.02	Median	9	Top 3	23
σ	8.14	3rd Q	19	Top 12	21

§5.2 Problem statistics for USEMO 2021

	P1	P2	P3	P4	P5	P6
0	16	45	80	36	76	80
1	8	0	1	6	1	1
2	8	4	0	3	1	1
3	6	0	0	1	0	0
4	0	0	0	0	0	0
5	0	0	0	1	1	0
6	8	12	0	1	0	0
7	37	22	2	35	4	1
Avg	4.20	2.82	0.18	3.27	0.43	0.12
QM	5.14	4.29	1.09	4.66	1.65	0.81
\#5+	45	34	2	37	5	1
$\%_{5+}$	$\%_{54.2}$	\%41.0	\%2.4	\%44.6	\%6.0	\%1.2

§5.3 Rankings for USEMO 2021

Sc	Num	Cu	Per	Sc	Num	Cu	Per	Sc	Num	Cu	Per
42	0	0	0.00%	28	0	1	1.20%	14	10	37	44.58%
41	0	0	0.00%	27	0	1	1.20%	13	2	39	46.99%
40	0	0	0.00%	26	0	1	1.20%	12	2	41	49.40%
39	0	0	0.00%	25	0	1	1.20%	11	0	41	49.40%
38	0	0	0.00%	24	1	2	2.41%	10	0	41	49.40%
37	0	0	0.00%	23	2	4	4.82%	9	4	45	54.22%
36	0	0	0.00%	22	3	7	8.43%	8	6	51	61.45%
35	1	1	1.20%	21	10	17	20.48%	7	7	58	69.88%
34	0	1	1.20%	20	2	19	22.89%	6	2	60	72.29%
33	0	1	1.20%	19	2	21	25.30%	5	0	60	72.29%
32	0	1	1.20%	18	1	22	26.51%	4	1	61	73.49%
31	0	1	1.20%	17	2	24	28.92%	3	2	63	75.90%
30	0	1	1.20%	16	0	24	28.92%	2	4	67	80.72%
29	0	1	1.20%	15	3	27	32.53%	1	6	73	87.95%
								0	10	83	100.00%

§5.4 Histogram for USEMO 2021

§5.5 Full stats for USEMO 2021

Rank	P1	P2	P3	P4	P5	P6	Σ
1.	7	7	7	7	7	0	35
2.	6	6	0	7	5	0	24
3.	7	7	0	7	2	0	23
3.	7	7	0	2	7	0	23
5.	7	7	1	7	0	0	22
5.	7	0	0	7	7	1	22
5.	2	6	7	0	7	0	22
8.	7	7	0	7	0	0	21
8.	7	7	0	7	0	0	21
8.	7	7	0	7	0	0	21
8.	7	7	0	7	0	0	21
8.	7	7	0	7	0	0	21
8.	7	7	0	7	0	0	21
8.	7	7	0	7	0	0	21
8.	7	7	0	7	0	0	21
8.	7	7	0	7	0	0	21
8.	7	7	0	0	0	7	21
18.	7	6	0	7	0	0	20
18.	7	6	0	7	0	0	20
20.	6	7	0	6	0	0	19
20.	6	6	0	7	0	0	19
22.	7	2	0	7	0	2	18
23.	3	7	0	7	0	0	17
23.	3	7	0	7	0	0	17
25.	7	7	0	1	0	0	15
25.	7	0	0	7	1	0	15
25.	2	6	0	7	0	0	15
28.	7	7	0	0	0	0	14
28.	7	7	0	0	0	0	14
28.	7	0	0	7	0	0	14
28.	7	0	0	7	0	0	14
28.	7	0	0	7	0	0	14
28.	7	0	0	7	0	0	14
28.	7	0	0	7	0	0	14
28.	7	0	0	7	0	0	14
28.	7	0	0	7	0	0	14
28.	6	6	0	2	0	0	14
38.	7	6	0	0	0	0	13

Rank	P1	P2	P3	P4	P5	P6	Σ
38.	6	7	0	0	0	0	13
40.	3	6	0	3	0	0	12
40.	1	6	0	5	0	0	12
42.	7	2	0	0	0	0	9
42.	3	6	0	0	0	0	9
42.	2	0	0	7	0	0	9
42.	2	0	0	7	0	0	9
46.	7	0	0	1	0	0	8
46.	7	0	0	1	0	0	8
46.	7	0	0	1	0	0	8
46.	6	2	0	0	0	0	8
46.	6	0	0	2	0	0	8
46.	1	0	0	7	0	0	8
52.	7	0	0	0	0	0	7
52.	7	0	0	0	0	0	7
52.	7	0	0	0	0	0	7
52.	0	7	0	0	0	0	7
52.	0	0	0	7	0	0	7
52.	0	0	0	7	0	0	7
52.	0	0	0	7	0	0	7
59.	6	0	0	0	0	0	6
59.	0	6	0	0	0	0	6
61.	2	2	0	0	0	0	4
62.	3	0	0	0	0	0	3
62.	3	0	0	0	0	0	3
64.	2	0	0	0	0	0	2
64.	2	0	0	0	0	0	2
64.	2	0	0	0	0	0	2
64.	1	0	0	1	0	0	2
68.	1	0	0	0	0	0	1
68.	1	0	0	0	0	0	1
68.	1	0	0	0	0	0	1
68.	1	0	0	0	0	0	1
68.	1	0	0	0	0	0	1
68.	0	0	0	1	0	0	1
74.	0	0	0	0	0	0	0
74.	0	0	0	0	0	0	0
74.	0	0	0	0	0	0	0
74.	0	0	0	0	0	0	0
74.	0	0	0	0	0	0	0
74.	0	0	0	0	0	0	0
74.	0	0	0	0	0	0	0
74.	0	0	0	0	0	0	0
74.	0	0	0	0	0	0	0
74.	0	0	0	0	0	0	0

