October 21, 2023

Problem 1. A positive integer n is called beautiful if, for every integer $4 \leq b \leq 10000$, the base- b representation of n contains the consecutive digits $2,0,2,3$ (in this order, from left to right). Determine whether the set of all beautiful integers is finite.

Problem 2. Each point in the plane is labeled with a real number. Show that there exist two distinct points P and Q whose labels differ by less than the distance from P to Q.

Problem 3. Canmoo is trying to do constructions, but doesn't have a ruler or compass. Instead, Canmoo has a device that, given four distinct points A, B, C, P in the plane, will mark the isogonal conjugate of P with respect to triangle $A B C$, if it exists. Show that if two points are marked on the plane, then Canmoo can construct their midpoint using this device, a pencil for marking additional points, and no other tools.
(Recall that the isogonal conjugate of P with respect to triangle $A B C$ is the point Q such that lines $A P$ and $A Q$ are reflections around the bisector of $\angle B A C$, lines $B P$ and $B Q$ are reflections around the bisector of $\angle C B A$, lines $C P$ and $C Q$ are reflections around the bisector of $\angle A C B$. Additional points marked by the pencil can be assumed to be in general position, meaning they don't lie on any line through two existing points or any circle through three existing points.)

Problem 4. Let $A B C$ be an acute triangle with orthocenter H. Points A_{1}, B_{1}, C_{1} are chosen in the interiors of sides $B C, C A, A B$, respectively, such that $\triangle A_{1} B_{1} C_{1}$ has orthocenter H. Define $A_{2}=\overline{A H} \cap \overline{B_{1} C_{1}}, B_{2}=\overline{B H} \cap \overline{C_{1} A_{1}}$, and $C_{2}=\overline{C H} \cap \overline{A_{1} B_{1}}$.

Prove that triangle $A_{2} B_{2} C_{2}$ has orthocenter H.

Problem 5. Let $n \geq 2$ be an integer. A cube of size $n \times n \times n$ is dissected into n^{3} unit cubes. A nonzero real number is written at the center of each unit cube so that the sum of the n^{2} numbers in each slab of size $1 \times n \times n, n \times 1 \times n$, or $n \times n \times 1$ equals zero. (There are a total of $3 n$ such slabs, forming three groups of n slabs each such that slabs in the same group are parallel and slabs in different groups are perpendicular.)

Could it happen that some plane in three-dimensional space separates the positive and the negative written numbers? (The plane should not pass through any of the numbers.)

Problem 6. Let $n \geq 2$ be a fixed integer.
(a) Determine the largest positive integer m (in terms of n) such that there exist complex numbers r_{1}, \ldots, r_{n}, not all zero, for which

$$
\prod_{k=1}^{n}\left(r_{k}+1\right)=\prod_{k=1}^{n}\left(r_{k}^{2}+1\right)=\cdots=\prod_{k=1}^{n}\left(r_{k}^{m}+1\right)=1
$$

(b) For this value of m, find all possible values of

$$
\prod_{k=1}^{n}\left(r_{k}^{m+1}+1\right)
$$

