Problem 1. A stick is defined as a $1 \times k$ or $k \times 1$ rectangle for any integer $k \geq 1$. We wish to partition the cells of a 2022×2022 chessboard into m non-overlapping sticks, such that any two of these m sticks share at most one unit of perimeter. Determine the smallest m for which this is possible.

Problem 2. A function $\psi: \mathbb{Z} \rightarrow \mathbb{Z}$ is said to be zero-requiem if for any positive integer n and any integers a_{1}, \ldots, a_{n} (not necessarily distinct), the sums $a_{1}+a_{2}+\cdots+a_{n}$ and $\psi\left(a_{1}\right)+\psi\left(a_{2}\right)+\cdots+\psi\left(a_{n}\right)$ are not both zero.

Let f and g be two zero-requiem functions for which $f \circ g$ and $g \circ f$ are both the identity function (that is, f and g are mutually inverse bijections). Given that $f+g$ is not a zero-requiem function, prove that $f \circ f$ and $g \circ g$ are both zero-requiem.*

Problem 3. Point P lies in the interior of a triangle $A B C$. Lines $A P, B P$, and $C P$ meet the opposite sides of triangle $A B C$ at points A^{\prime}, B^{\prime}, and C^{\prime}, respectively. Let P_{A} be the midpoint of the segment joining the incenters of triangles $B P C^{\prime}$ and $C P B^{\prime}$, and define points P_{B} and P_{C} analogously. Show that if

$$
A B^{\prime}+B C^{\prime}+C A^{\prime}=A C^{\prime}+B A^{\prime}+C B^{\prime}
$$

then points P, P_{A}, P_{B}, and P_{C} are concyclic.

[^0]Day: 2

Sunday, October 23, 2022

Problem 4. Let $A B C D$ be a cyclic quadrilateral whose opposite sides are not parallel. Suppose points P, Q, R, S lie in the interiors of segments $A B, B C, C D, D A$, respectively, such that

$$
\angle P D A=\angle P C B, \quad \angle Q A B=\angle Q D C, \quad \angle R B C=\angle R A D, \quad \text { and } \quad \angle S C D=\angle S B A .
$$

Let $\overline{A Q}$ intersect $\overline{B S}$ at X, and $\overline{D Q}$ intersect $\overline{C S}$ at Y. Prove that lines $\overline{P R}$ and $\overline{X Y}$ are either parallel or coincide.

Problem 5. Let $\tau(n)$ denote the number of positive integer divisors of a positive integer n (for example, $\tau(2022)=8$). Given a polynomial $P(X)$ with integer coefficients, we define a sequence a_{1}, a_{2}, \ldots of nonnegative integers by setting

$$
a_{n}= \begin{cases}\operatorname{gcd}(P(n), \tau(P(n))) & \text { if } P(n)>0 \\ 0 & \text { if } P(n) \leq 0\end{cases}
$$

for each positive integer n. We then say the sequence has limit infinity if every integer occurs in this sequence only finitely many times (possibly not at all).

Does there exist a choice of $P(X)$ for which the sequence a_{1}, a_{2}, \ldots has limit infinity?

Problem 6. Find all positive integers k for which there exists a nonlinear ${ }^{\dagger}$ function $f: \mathbb{Z} \rightarrow \mathbb{Z}$ such that the equation

$$
f(a)+f(b)+f(c)=\frac{f(a-b)+f(b-c)+f(c-a)}{k}
$$

holds for any integers a, b, c satisfying $a+b+c=0$ (not necessarily distinct).

[^1]
[^0]: ${ }^{*}$ Recall that if ψ_{1} and ψ_{2} are functions from \mathbb{Z} to \mathbb{Z}, then the composition $\psi_{1} \circ \psi_{2}$ is defined as the function sending each $x \in \mathbb{Z}$ to $\psi_{1}\left(\psi_{2}(x)\right)$, while the sum $\psi_{1}+\psi_{2}$ is defined as the function sending each $x \in \mathbb{Z}$ to $\psi_{1}(x)+\psi_{2}(x)$.

[^1]: ${ }^{\dagger}$ We say $f: \mathbb{Z} \rightarrow \mathbb{Z}$ is nonlinear if $f(x) \neq(f(1)-f(0)) x+f(0)$ for some $x \in \mathbb{Z}$.

