Problem 1. Let $A B C D$ be a cyclic quadrilateral. A circle centered at O passes through B and D and meets lines $B A$ and $B C$ again at points E and F (distinct from A, B, C). Let H denote the orthocenter of triangle $D E F$. Prove that if lines $A C, D O, E F$ are concurrent, then triangles $A B C$ and $E H F$ are similar.

Problem 2. Let $\mathbb{Z}[x]$ denote the set of single-variable polynomials in x with integer coefficients. Find all functions $\theta: \mathbb{Z}[x] \rightarrow \mathbb{Z}[x]$ (i.e. functions taking polynomials to polynomials) such that

- for any polynomials $p, q \in \mathbb{Z}[x], \theta(p+q)=\theta(p)+\theta(q)$;
- for any polynomial $p \in \mathbb{Z}[x], p$ has an integer root if and only if $\theta(p)$ does.

Problem 3. Consider an infinite grid \mathcal{G} of unit square cells. A chessboard polygon is a simple polygon (i.e. not self-intersecting) whose sides lie along the gridlines of \mathcal{G}.

Nikolai chooses a chessboard polygon F and challenges you to paint some cells of \mathcal{G} green, such that any chessboard polygon congruent to F has at least 1 green cell but at most 2020 green cells. Can Nikolai choose F to make your job impossible?

Problem 4. Prove that for any prime p, there exists a positive integer n such that

$$
1^{n}+2^{n-1}+3^{n-2}+\cdots+n^{1} \equiv 2020 \quad(\bmod p)
$$

Problem 5. Let \mathcal{P} be a regular polygon, and let \mathcal{V} be the set of its vertices. Each point in \mathcal{V} is colored red, white, or blue. A subset of \mathcal{V} is patriotic if it contains an equal number of points of each color, and a side of \mathcal{P} is dazzling if its endpoints are of different colors.

Suppose that \mathcal{V} is patriotic and the number of dazzling edges of \mathcal{P} is even. Prove that there exists a line, not passing through any point of \mathcal{V}, dividing \mathcal{V} into two nonempty patriotic subsets.

Problem 6. Let $A B C$ be an acute scalene triangle with circumcenter O and altitudes $\overline{A D}$, $\overline{B E}, \overline{C F}$. Let X, Y, Z be the midpoints of $\overline{A D}, \overline{B E}, \overline{C F}$. Lines $A D$ and $Y Z$ intersect at P, lines $B E$ and $Z X$ intersect at Q, and lines $C F$ and $X Y$ intersect at R.

Suppose that lines $Y Z$ and $B C$ intersect at A^{\prime}, and lines $Q R$ and $E F$ intersect at D^{\prime}. Prove that the perpendiculars from A, B, C, O to the lines $Q R, R P, P Q, A^{\prime} D^{\prime}$, respectively, are concurrent.

