USAMO 2024 Solution Notes

Evan Chen《陳誼廷》

15 April 2024

This is a compilation of solutions for the 2024 USAMO．The ideas of the solution are a mix of my own work，the solutions provided by the competition organizers，and solutions found by the community．However，all the writing is maintained by me．

These notes will tend to be a bit more advanced and terse than the＂official＂ solutions from the organizers．In particular，if a theorem or technique is not known to beginners but is still considered＂standard＂，then I often prefer to use this theory anyways，rather than try to work around or conceal it．For example，in geometry problems I typically use directed angles without further comment，rather than awkwardly work around configuration issues．Similarly， sentences like＂let \mathbb{R} denote the set of real numbers＂are typically omitted entirely．

Corrections and comments are welcome！

Contents

0 Problems 2
1 Solutions to Day 1 3
1．1 USAMO 2024／1，proposed by Luke Robitaille 3
1．2 USAMO 2024／2，proposed by Rishabh Das 4
1．3 USAMO 2024／3，proposed by Krit Boonsiriseth 7
2 Solutions to Day 2 9
2．1 USAMO 2024／4，proposed by Rishabh Das 9
2．2 USAMO 2024／5，proposed by Anton Trygub 11
2．3 USAMO 2024／6，proposed by Titu Andreescu and Gabriel Dospinescu 16

§0 Problems

1. Find all integers $n \geq 3$ such that the following property holds: if we list the divisors of n ! in increasing order as $1=d_{1}<d_{2}<\cdots<d_{k}=n$!, then we have

$$
d_{2}-d_{1} \leq d_{3}-d_{2} \leq \cdots \leq d_{k}-d_{k-1}
$$

2. Let $S_{1}, S_{2}, \ldots, S_{100}$ be finite sets of integers whose intersection is not empty. For each non-empty $T \subseteq\left\{S_{1}, S_{2}, \ldots, S_{100}\right\}$, the size of the intersection of the sets in T is a multiple of $|T|$. What is the smallest possible number of elements which are in at least 50 sets?
3. Let (m, n) be positive integers with $n \geq 3$ and draw a regular n-gon. We wish to triangulate this n-gon into $n-2$ triangles, each colored one of m colors, so that each color has an equal sum of areas. For which (m, n) is such a triangulation and coloring possible?
4. Let m and n be positive integers. A circular necklace contains $m n$ beads, each either red or blue. It turned out that no matter how the necklace was cut into m blocks of n consecutive beads, each block had a distinct number of red beads. Determine, with proof, all possible values of the ordered pair (m, n).
5. Point D is selected inside acute triangle $A B C$ so that $\angle D A C=\angle A C B$ and $\angle B D C=90^{\circ}+\angle B A C$. Point E is chosen on ray $B D$ so that $A E=E C$. Let M be the midpoint of $B C$. Show that line $A B$ is tangent to the circumcircle of triangle $B E M$.
6. Let $n>2$ be an integer and let $\ell \in\{1,2, \ldots, n\}$. A collection A_{1}, \ldots, A_{k} of (not necessarily distinct) subsets of $\{1,2, \ldots, n\}$ is called ℓ-large if $\left|A_{i}\right| \geq \ell$ for all $1 \leq i \leq k$. Find, in terms of n and ℓ, the largest real number c such that the inequality

$$
\sum_{i=1}^{k} \sum_{j=1}^{k} x_{i} x_{j} \frac{\left|A_{i} \cap A_{j}\right|^{2}}{\left|A_{i}\right| \cdot\left|A_{j}\right|} \geq c\left(\sum_{i=1}^{k} x_{i}\right)^{2}
$$

holds for all positive integer k, all nonnegative real numbers $x_{1}, x_{2}, \ldots, x_{k}$, and all ℓ-large collections $A_{1}, A_{2}, \ldots, A_{k}$ of subsets of $\{1,2, \ldots, n\}$.

§1 Solutions to Day 1

§1.1 USAMO 2024/1, proposed by Luke Robitaille

Available online at https://aops.com/community/p30216459.

Problem statement

Find all integers $n \geq 3$ such that the following property holds: if we list the divisors of n ! in increasing order as $1=d_{1}<d_{2}<\cdots<d_{k}=n$!, then we have

$$
d_{2}-d_{1} \leq d_{3}-d_{2} \leq \cdots \leq d_{k}-d_{k-1}
$$

The answer is $n \in\{3,4\}$. These can be checked by listing all the divisors:

- For $n=3$ we have $(1,2,3,6)$.
- For $n=4$ we have $(1,2,3,4,6,8,12,24)$.

We prove these are the only ones.
The numbers $5 \leq n \leq 12$ all fail because:

- For $n=5$ we have $20-15<24-20$.
- For $n=6$ we have $18-15<20-18$.
- For $7 \leq n \leq 12$ we have because $14-12>25-24$ (and $13 \nmid n!$).

Now assume $n \geq 13$. In that case, we have

$$
\left\lfloor\frac{n}{2}\right\rfloor^{2}-1 \geq 2 n
$$

So by Bertrand postulate, we can find a prime p such that

$$
n<p<\left\lfloor\frac{n}{2}\right\rfloor^{2}-1
$$

However, note that

$$
\left\lfloor\frac{n}{2}\right\rfloor^{2}-1=\left(\left\lfloor\frac{n}{2}\right\rfloor-1\right)\left(\left\lfloor\frac{n}{2}\right\rfloor+1\right), \quad\left\lfloor\frac{n}{2}\right\rfloor^{2}
$$

are consecutive integers both dividing n ! (the latter number divides $\left\lfloor\frac{n}{2}\right\rfloor \cdot\left(2\left\lfloor\frac{n}{2}\right\rfloor\right)$). So the prime p causes the desired contradiction.

§1.2 USAMO 2024/2, proposed by Rishabh Das

Available online at https://aops.com/community/p30216494.

Problem statement

Let $S_{1}, S_{2}, \ldots, S_{100}$ be finite sets of integers whose intersection is not empty. For each non-empty $T \subseteq\left\{S_{1}, S_{2}, \ldots, S_{100}\right\}$, the size of the intersection of the sets in T is a multiple of $|T|$. What is the smallest possible number of elements which are in at least 50 sets?

The answer is $50\binom{100}{50}$.
【 Rephrasing (cosmetic translation only, nothing happens yet). We encode with binary strings $v \in \mathbb{F}_{2}^{100}$ of length 100 . Write $v \subseteq w$ if w has 1's in every component v does, and let $|v|$ denote the number of 1 's in v.

Then for each v, we let $f(v)$ denote the number of elements $x \in \bigcup S_{i}$ such that $x \in S_{i} \Longleftrightarrow v_{i}=1$. For example,

- $f(1 \ldots 1)$ denotes $\left|\bigcap_{1}^{100} S_{i}\right|$, so we know $f(1 \ldots 1) \equiv 0(\bmod 100)$.
- $f(1 \ldots 10)$ denotes the number of elements in S_{1} through S_{99} but not S_{100} so we know that $f(1 \ldots 1)+f(1 \ldots 10) \equiv 0(\bmod 99)$.
- ...And so on.

So the problem condition means that $f(v)$ translates to the statement

$$
P(u): \quad|u| \text { divides } \sum_{v \supseteq u} f(v)
$$

for any $u \neq 0 \ldots 0$, plus one extra condition $f(1 \ldots 1)>0$. And the objective function is to minimize the quantity

$$
A:=\sum_{|v| \geq 50} f(v) .
$$

So the problem is transformed into an system of equations over $\mathbb{Z}_{\geq 0}$ (it's clear any assignment of values of $f(v)$ can be translated to a sequence (S_{1}, \ldots, S_{100}) in the original notation).

Note already that:
Claim - It suffices to assign $f(v)$ for $|v| \geq 50$.
Proof. If we have found a valid assignment of values to $f(v)$ for $|v| \geq 50$, then we can always arbitrarily assign values of $f(v)$ for $|v|<50$ by downwards induction on $|v|$ to satisfy the divisibility condition (without changing M).

Thus, for the rest of the solution, we altogether ignore $f(v)$ for $|v|<50$ and only consider $P(u)$ for $|u| \geq 50$.

【 Construction. Consider the construction

$$
f_{0}(v)=2|v|-100 .
$$

This construction is valid since if $|u|=100-k$ for $k \leq 50$ then

$$
\begin{aligned}
\sum_{v \supseteq u} f_{0}(v) & =\binom{k}{0} \cdot 100+\binom{k}{1} \cdot 98+\binom{k}{2} \cdot 96+\cdots+\binom{k}{k} \cdot(100-2 k) \\
& =(100-k) \cdot 2^{k}=|u| \cdot 2^{k}
\end{aligned}
$$

is indeed a multiple of $|u|$, hence $P(u)$ is true. In that case, the objective function is

$$
A=\sum_{i=50}^{100}\binom{100}{i}(2 i-100)=50\binom{100}{50}
$$

as needed.
Remark. This construction is the "easy" half of the problem because it coincides with what you get from a greedy algorithm by downwards induction on $|u|$ (equivalently, induction on $k=100-|u| \geq 0)$. To spell out the first three steps,

- We know $f(1 \ldots 1)$ is a nonzero multiple of 100 , so it makes sense to guess $f(1 \ldots 1)=$ 100.
- Then we have $f(1 \ldots 10)+100 \equiv 0(\bmod 99)$, and the smallest multiple of 99 which is at least 100 is 198 . So it makes sense to guess $f(1 \ldots 10)=98$, and similarly guess $f(v)=98$ whenever $|v|=99$.
- Now when we consider, say $v=1 \ldots 100$ with $|v|=98$, we get

$$
f(1 \ldots 100)+\underbrace{f(1 \ldots 101)}_{=98}+\underbrace{f(1 \ldots 110)}_{=98}+\underbrace{f(1 \ldots 111)}_{=100} \equiv 0(\bmod 98) .
$$

we obtain $f(1 \ldots 100) \equiv 96(\bmod 98)$. That makes $f(1 \ldots 100)=96$ a reasonable guess.
Continuing in this way gives the construction above.

【 Proof of bound. We are going to use a smoothing argument: if we have a general working assignment f, we will mold it into f_{0}.

We define a push-down on v as the following operation:

- Pick any v such that $|v| \geq 50$ and $f(v) \geq|v|$.
- Decrease $f(v)$ by $|v|$.
- For every w such that $w \subseteq v$ and $|w|=|v|-1$, increase $f(w)$ by 1 .

Claim - Apply a push-down preserves the main divisibility condition. Moreover, it doesn't change A unless $|v|=50$, where it decreases A by 50 instead.

Proof. The statement $P(u)$ is only affected when $u \subseteq v$: to be precise, one term on the right-hand side of $P(u)$ increases by $|v|$, while $|v|-|u|$ terms decrease by 1 , for a net change of $+|u|$. So $P(u)$ still holds.

To see A doesn't change for $|v|>50$, note $|v|$ terms increase by 1 while one term decreases by $-|v|$. When $|v|=50$, only $f(v)$ decreases by 50 .

Now, given a valid assignment, we can modify it as follows:

- First apply pushdowns on $1 \ldots 1$ until $f(1 \ldots 1)=100$;
- Then we may apply pushdowns on each v with $|v|=99$ until $f(v)<99$;
- Then we may apply pushdowns on each v with $|v|=98$ until $f(v)<98$;
- ... and so on, until we have $f(v)<50$ for $|v|=50$.

Hence we get $f(1 \ldots 1)=100$ and $0 \leq f(v)<|v|$ for all $50 \leq|v| \leq 100$. However, by downwards induction on $|v|=99,98, \ldots, 50$, we also have

$$
f(v) \equiv f_{0}(v) \quad(\bmod |v|) \Longrightarrow f(v)=f_{0}(v)
$$

since $f_{0}(v)$ and $f(v)$ are both strictly less than $|v|$. So in fact $f=f_{0}$, and we're done.
Remark. The fact that push-downs actually don't change A shows that the equality case we described is far from unique: in fact, we could have made nearly arbitrary sub-optimal decisions during the greedy algorithm and still ended up with an equality case. For a concrete example, the construction

$$
f(v)= \begin{cases}500 & |v|=100 \\ 94 & |v|=99 \\ 100-2|v| & 50 \leq|v| \leq 98\end{cases}
$$

works fine as well (where we arbitrarily chose 500 at the start, then used the greedy algorithm thereafter).

§1.3 USAMO 2024/3, proposed by Krit Boonsiriseth

Available online at https://aops.com/community/p30216513.

Problem statement

Let (m, n) be positive integers with $n \geq 3$ and draw a regular n-gon. We wish to triangulate this n-gon into $n-2$ triangles, each colored one of m colors, so that each color has an equal sum of areas. For which (m, n) is such a triangulation and coloring possible?

The answer is if and only if m is a proper divisor of n.
Throughout this solution, we let $\omega=\exp (2 \pi i / n)$ and let the regular n-gon have vertices $1, \omega, \ldots, \omega^{n-1}$. We cache the following frequent calculation:

Lemma

The triangle with vertices $\omega^{k}, \omega^{k+a}, \omega^{k+b}$ has signed area

$$
T(a, b):=\frac{\left(\omega^{a}-1\right)\left(\omega^{b}-1\right)\left(\omega^{-a}-\omega^{-b}\right)}{2 i} .
$$

Proof. Rotate by ω^{-k} to assume WLOG that $k=0$. Apply complex shoelace to the triangles with vertices $1, \omega^{a}, \omega^{b}$ to get

$$
\frac{1}{2 i} \operatorname{det}\left[\begin{array}{ccc}
1 & 1 & 1 \\
\omega^{a} & \omega^{-a} & 1 \\
\omega^{b} & \omega^{-b} & 1
\end{array}\right]=\frac{1}{2 i} \operatorname{det}\left[\begin{array}{ccc}
0 & 0 & 1 \\
\omega^{a}-1 & \omega^{-a}-1 & 1 \\
\omega^{b}-1 & \omega^{-b}-1 & 1
\end{array}\right]
$$

which equals the above.

- Construction. It suffices to actually just take all the diagonals from the vertex 1 , and then color the triangles with the m colors in cyclic order. For example, when $n=9$ and $m=3$, a coloring with red, green, blue would be:

To see this works one can just do the shoelace calculation: for a given residue $r \bmod m$, we get an area

$$
\begin{aligned}
\sum_{j \equiv r \bmod m} \operatorname{Area}\left(\omega^{j}, \omega^{0}, \omega^{j+1}\right) & =\sum_{j \equiv r \bmod m} T(-j, 1) \\
& =\sum_{j \equiv r \bmod m} \frac{\left(\omega^{-j}-1\right)\left(\omega^{1}-1\right)\left(\omega^{j}-\omega^{-1}\right)}{2 i} \\
& =\frac{\omega-1}{2 i} \sum_{j \equiv r \bmod m}\left(\omega^{-j}-1\right)\left(\omega^{j}-\omega^{-1}\right) \\
& =\frac{\omega-1}{2 i}\left(\frac{n}{m}\left(1+\omega^{-1}\right)+\sum_{j \equiv r \bmod m}\left(\omega^{-j}-\omega^{j}\right)\right) .
\end{aligned}
$$

(We allow degenerate triangles where $j \in\{-1,0\}$ with area zero.) However, if m is a proper divisor of m, then $\sum_{j \equiv r \bmod m} \omega^{j}=\omega^{r}\left(1+\omega^{m}+\omega^{2 m}+\cdots+\omega^{n-m}\right)=0$. Similarly, $\sum_{j \equiv r \bmod m} \omega^{-j}=0$. So the inner sum vanishes, and the total area of the m th color equals

$$
\frac{n}{m} \frac{(\omega-1)\left(\omega^{-1}+1\right)}{2 i}
$$

which does not depend on the residue r, proving the coloring works.

ๆ Proof of necessity. It's obvious that $m<n$ (in fact $m \leq n-2$). So we focus on just showing $m \mid n$.

Repeating the same calculation as above, we find that if there was a valid triangulation and coloring, the total area of each color would equal

$$
S:=\frac{n}{m} \frac{(\omega-1)\left(\omega^{-1}+1\right)}{2 i} .
$$

However:

Claim - The number $2 i \cdot S$ is not an algebraic integer when $m \nmid n$.

Proof. This is easiest to see if one knows the advanced result that $K:=\mathbb{Q}(\omega)$ is a number field whose ring of integers is known to be $\mathcal{O}_{K}=\mathbb{Z}[\omega]$. Hence if one takes $\left(\omega^{-1}, \omega^{0}, \omega^{1}, \ldots, \omega^{n-2}\right)$ as a \mathbb{Q}-basis of K, then \mathcal{O}_{K} is the subset where each coefficient is integer.

However, each of the quantities $T(a, b)$ is $\frac{1}{2 i}$ times an algebraic integer. Since a finite sum of algebraic integers is also an algebraic integer, such areas can never sum to S.

Remark. If one wants to avoid citing the fact that $\mathcal{O}_{K}=\mathbb{Z}[\omega]$, then one can instead note that $T(a, b)$ is actually always divisible by $(\omega-1)\left(\omega^{-1}+1\right)$ over the algebraic integers (at least one of $\left\{\omega^{a}-1, \omega^{b}-1, \omega^{-a}-\omega^{-b}\right\}$ is a multiple of $\omega+1$, by casework on $a, b \bmod 2$). Then one using $\frac{2 i}{(\omega-1)\left(\omega^{-1}+1\right)}$ as the scaling factor instead of $2 i$, one sees that we actually need $\frac{n}{m}$ to be an algebraic integer, which happens only when m divides n.

§2 Solutions to Day 2

§2.1 USAMO 2024/4, proposed by Rishabh Das

Available online at https://aops.com/community/p30227198.

Problem statement

Let m and n be positive integers. A circular necklace contains $m n$ beads, each either red or blue. It turned out that no matter how the necklace was cut into m blocks of n consecutive beads, each block had a distinct number of red beads. Determine, with proof, all possible values of the ordered pair (m, n).

The answer is $m \leq n+1$ only.

ब Proof the task requires $m \leq n+1$. Each of the m blocks has a red bead count between 0 and n, each of which appears at most once, so $m \leq n+1$ is needed.

I Construction when $m=n+1$. For concreteness, here is the construction for $n=4$, which obviously generalizes. The beads are listed in reading order as an array with $n+1$ rows and n columns. Four of the blue beads have been labeled B_{1}, \ldots, B_{n} to make them easier to track as they move.

$$
T_{0}=\left[\begin{array}{llll}
R & R & R & R \\
R & R & R & B_{1} \\
R & R & B & B_{2} \\
R & B & B & B_{3} \\
B & B & B & B_{4}
\end{array}\right]
$$

To prove this construction works, it suffices to consider the n cuts $T_{0}, T_{1}, T_{2}, \ldots, T_{n-1}$ made where T_{i} differs from T_{i-1} by having the cuts one bead later also have the property each row has a distinct red count:

$$
T_{1}=\left[\begin{array}{llll}
R & R & R & R \\
R & R & B_{1} & R \\
R & B & B_{2} & R \\
B & B & B_{3} & B \\
B & B & B_{4} & R
\end{array}\right] \quad T_{2}=\left[\begin{array}{cccc}
R & R & R & R \\
R & B_{1} & R & R \\
B & B_{2} & R & B \\
B & B_{3} & B & B \\
B & B_{4} & R & R
\end{array}\right] \quad T_{3}=\left[\begin{array}{cccc}
R & R & R & R \\
B_{1} & R & R & B \\
B_{2} & R & B & B \\
B_{3} & B & B & B \\
B_{4} & R & R & R
\end{array}\right] .
$$

We can construct a table showing for each $1 \leq k \leq n+1$ the number of red beads which are in the $(k+1)$ st row of T_{i} from the bottom:

k	T_{0}	T_{1}	T_{2}	T_{3}
$k=4$	4	4	4	4
$k=3$	3	3	3	2
$k=2$	2	2	1	1
$k=1$	1	0	0	0
$k=0$	0	1	2	3

This suggests following explicit formula for the entry of the (i, k) th cell which can then be checked straightforwardly:

$$
\#\left(\text { red cells in } k \text { th row of } T_{i}\right)= \begin{cases}k & k>i \\ k-1 & i \geq k>0 \\ i & k=0\end{cases}
$$

And one can see for each i, the counts are all distinct (they are ($i, 0,1, \ldots, k-1, k+1, \ldots, k$) from bottom to top). This completes the construction.

【 Construction when $m<n+1$. Fix m. Take the construction for ($m, m-1$) and add $n+1-m$ cyan beads to the start of each row; for example, if $n=7$ and $m=5$ then the new construction is

$$
T=\left[\begin{array}{lllllll}
C & C & C & R & R & R & R \\
C & C & C & R & R & R & B_{1} \\
C & C & C & R & R & B & B_{2} \\
C & C & C & R & B & B & B_{3} \\
C & C & C & B & B & B & B_{4}
\end{array}\right] .
$$

This construction still works for the same reason (the cyan beads do nothing for the first $n+1-m$ shifts, then one reduces to the previous case). If we treat cyan as a shade of blue, this finishes the problem.

§2.2 USAMO 2024/5, proposed by Anton Trygub

Available online at https://aops.com/community/p30227196.

Problem statement

Point D is selected inside acute triangle $A B C$ so that $\angle D A C=\angle A C B$ and $\angle B D C=$ $90^{\circ}+\angle B A C$. Point E is chosen on ray $B D$ so that $A E=E C$. Let M be the midpoint of $B C$. Show that line $A B$ is tangent to the circumcircle of triangle $B E M$.

This problem has several approaches and we showcase a collection of them.
【 The author's original solution. Complete isosceles trapezoid $A B Q C$ (so $D \in \overline{A Q}$). Reflect B across E to point F.

Claim - We have $D Q C F$ is cyclic.
Proof. Since $E A=E C$, we have $\overline{Q F} \perp \overline{A C}$ as line $Q F$ is the image of the perpendicular bisector of $\overline{A C}$ under a homothety from B with scale factor 2 . Then

$$
\begin{aligned}
\measuredangle F D C & =-\measuredangle C D B=180^{\circ}-\left(90^{\circ}+\measuredangle C A B\right)=90^{\circ}-\measuredangle C A B \\
& =90^{\circ}-\measuredangle Q C A=\measuredangle F Q C .
\end{aligned}
$$

To conclude, note that

$$
\measuredangle B E M=\measuredangle B F C=\measuredangle D F C=\measuredangle D Q C=\measuredangle A Q C=\measuredangle A B C=\measuredangle A B M .
$$

Remark (Motivation). Here is one possible way to come up with the construction of point F (at least this is what led Evan to find it). If one directs all the angles in the obvious way, there are really two points D and D^{\prime} that are possible, although one is outside the triangle; they give corresponding points E and E^{\prime}. The circles $B E M$ and $B E^{\prime} M$ must then actually coincide since they are both alleged to be tangent to line $A B$. See the figure below.

One can already prove using angle chasing that $\overline{A B}$ is tangent to $\left(B E E^{\prime}\right)$. So the point of the problem is to show that M lies on this circle too. However, from looking at the diagram, one may realize that in fact it seems

$$
\triangle M E E^{\prime} \stackrel{ \pm}{\sim} \triangle C D D^{\prime}
$$

is going to be true from just those marked in the figure (and this would certainly imply the desired concyclic conclusion). Since M is a midpoint, it makes sense to dilate $\triangle E M E^{\prime}$ from B by a factor of 2 to get $\triangle F C F^{\prime}$ so that the desired similarity is actually a spiral similarity at C. Then the spiral similarity lemma says that the desired similarity is equivalent to requiring $\overline{D D^{\prime}} \cap \overline{F F^{\prime}}=Q$ to lie on both $(C D F)$ and $\left(C D^{\prime} F^{\prime}\right)$. Hence the key construction and claim from the solution are both discovered naturally, and we find the solution above. (The points $D^{\prime}, E^{\prime}, F^{\prime}$ can then be deleted to hide the motivation.)

Another short solution. Let Z be on line $B D E$ such that $\angle B A Z=90^{\circ}$. This lets us interpret the angle condition as follows:

$$
\text { Claim - Points } A, D, Z, C \text { are cyclic. }
$$

Proof. Because $\measuredangle Z A C=90^{\circ}-A=180^{\circ}-\measuredangle C D B=\measuredangle Z D C$.

Define W as the midpoint of $\overline{B Z}$, so $\overline{M W} \| \overline{C Z}$. And let O denote the center of ($A B C$).

Claim - Points M, E, O, W are cyclic.
Proof. Note that

$$
\begin{aligned}
\measuredangle M O E & =\measuredangle(\overline{O M}, \overline{B C})+\measuredangle(\overline{B C}, \overline{A C})+\measuredangle(\overline{A C}, \overline{O E}) \\
& =90^{\circ}+\measuredangle B C A+90^{\circ} \\
& =\measuredangle B C A=\measuredangle C A D=\measuredangle C Z D=\measuredangle M W D=\measuredangle M W E .
\end{aligned}
$$

To finish, note

$$
\begin{aligned}
\measuredangle M E B & =\measuredangle M E W=\measuredangle M O W \\
& =\measuredangle(\overline{M O}, \overline{B C})+\measuredangle(\overline{B C}, \overline{A B})+\measuredangle(\overline{A B}, \overline{O W}) \\
& =90^{\circ}+\measuredangle C B A+90^{\circ}=\measuredangle C B A=\measuredangle M B A .
\end{aligned}
$$

This implies the desired tangency.

- A Menelaus-based approach (Kevin Ren). Let P be on $\overline{B C}$ with $A P=P C$. Let Y be the point on line $A B$ such that $\angle A C Y=90^{\circ}$; as $\angle A Y C=90^{\circ}-A$ it follows $B D Y C$ is cyclic. Let $K=\overline{A P} \cap \overline{C Y}$, so $\triangle A C K$ is a right triangle with P the midpoint of its hypotenuse.

Claim - Triangles BPE and DYK are similar.
Proof. We have $\measuredangle M P E=\measuredangle C P E=\measuredangle K C P=\measuredangle P K C$ and $\measuredangle E B P=\measuredangle D B C=$ $\measuredangle D Y C=\measuredangle D Y K$.

Claim - Triangles $B E M$ and $Y D C$ are similar.

Proof. By Menelaus $\triangle P C K$ with respect to collinear points A, B, Y that

$$
\frac{B P}{B C} \frac{Y C}{Y K} \frac{A K}{A P}=1
$$

Since $A K / A P=2$ (note that P is the midpoint of the hypotenuse of right triangle $A C K$) and $B C=2 B M$, this simplifies to

$$
\frac{B P}{B M}=\frac{Y K}{Y C}
$$

To finish, note that

$$
\measuredangle D B A=\measuredangle D B Y=\measuredangle D C Y=\measuredangle B M E
$$

implying the desired tangency.

IT A spiral similarity approach (Hans $\mathbf{Y u}$). As in the previous solution, let Y be the point on line $A B$ such that $\angle A C Y=90^{\circ}$; so $B D Y C$ is cyclic. Let Γ be the circle through B and M tangent to $\overline{A B}$, and let $\Omega:=(B C Y D)$. We need to show $E \in \Gamma$.

Denote by S the second intersection of Γ and Ω. The main idea behind is to consider the spiral similarity

$$
\Psi: \Omega \rightarrow \Gamma \quad C \mapsto M \text { and } Y \mapsto B
$$

centered at S (due to the spiral similarity lemma), and show that $\Psi(D)=E$. The spiral similarity lemma already promises $\Psi(D)$ lies on line $B D$.

Claim - We have $\Psi(A)=O$, the circumcenter of $A B C$.

Proof. Note $\triangle O B M \stackrel{\perp}{\sim} \triangle A Y C$; both are right triangles with $\measuredangle B A C=\measuredangle B O M$.

Claim - Ψ maps line $A D$ to line $O P$.

Proof. If we let P be on $\overline{B C}$ with $A P=P C$ as before,

$$
\measuredangle(\overline{A D}, \overline{O P})=\measuredangle A P O=\measuredangle O P C=\measuredangle Y C P=\measuredangle(\overline{Y C}, \overline{B M})
$$

As Ψ maps line $Y C$ to line $B M$ and $\Psi(A)=O$, we're done.
Hence $\Psi(D)$ should not only lie on $B D$ but also line $O P$. This proves $\Psi(D)=E$, so $E \in \Gamma$ as needed.

§2.3 USAMO 2024/6, proposed by Titu Andreescu and Gabriel Dospinescu

Problem statement

Let $n>2$ be an integer and let $\ell \in\{1,2, \ldots, n\}$. A collection A_{1}, \ldots, A_{k} of (not necessarily distinct) subsets of $\{1,2, \ldots, n\}$ is called ℓ-large if $\left|A_{i}\right| \geq \ell$ for all $1 \leq i \leq k$. Find, in terms of n and ℓ, the largest real number c such that the inequality

$$
\sum_{i=1}^{k} \sum_{j=1}^{k} x_{i} x_{j} \frac{\left|A_{i} \cap A_{j}\right|^{2}}{\left|A_{i}\right| \cdot\left|A_{j}\right|} \geq c\left(\sum_{i=1}^{k} x_{i}\right)^{2}
$$

holds for all positive integer k, all nonnegative real numbers $x_{1}, x_{2}, \ldots, x_{k}$, and all ℓ-large collections $A_{1}, A_{2}, \ldots, A_{k}$ of subsets of $\{1,2, \ldots, n\}$.

The answer turns out to be

$$
c=\frac{n+\ell^{2}-2 \ell}{n(n-1)} .
$$

Throughout this solution, we work with vectors in $\mathbb{R}^{n^{2}}$. The entries will be indexed by ordered pairs $(p, q) \in\{1, \ldots, n\}^{2}$; the notation $\langle\bullet, \bullet\rangle$ denotes dot product, and $\|\bullet\|$ the vector norm.
\| Rewriting as a dot product. For $i=1, \ldots, n$ define \mathbf{v}_{i} by

$$
\mathbf{v}_{i}[p, q]:=\left\{\begin{array}{ll}
\frac{1}{\left|A_{i}\right|} & p \in A_{i} \text { and } q \in A_{i} \\
0 & \text { otherwise } ;
\end{array} \quad \mathbf{v}:=\sum_{i} x_{i} \mathbf{v}_{i}\right.
$$

Then

$$
\begin{aligned}
\sum_{i} \sum_{j} x_{i} x_{j} \frac{\left|A_{i} \cap A_{j}\right|^{2}}{\left|A_{i}\right|\left|A_{j}\right|} & =\sum_{i} \sum_{j} x_{i} x_{j}\left\langle\mathbf{v}_{i}, \mathbf{v}_{j}\right\rangle \\
& =\left\langle\sum_{i} x_{i} \mathbf{v}_{i}, \sum_{j} x_{i} \mathbf{v}_{i}\right\rangle=\left\|\sum_{i} x_{i} \mathbf{v}_{i}\right\|^{2}=\|\mathbf{v}\|^{2}
\end{aligned}
$$

IT Proof of the inequality for the claimed value of c. We define two more vectors \mathbf{e} and $\mathbf{1}$; the vector \mathbf{e} has 1 in the $(p, q)^{\text {th }}$ component if $p=q$, and 0 otherwise, while $\mathbf{1}$ has all-ones. In that case, note that

$$
\begin{aligned}
& \langle\mathbf{e}, \mathbf{v}\rangle=\sum_{i} x_{i}\left\langle\mathbf{e}, \mathbf{v}_{i}\right\rangle=\sum_{i} x_{i} \\
& \langle\mathbf{1}, \mathbf{v}\rangle=\sum_{i} x_{i}\left\langle\mathbf{1}, \mathbf{v}_{i}\right\rangle=\sum_{i} x_{i}\left|A_{i}\right| .
\end{aligned}
$$

That means for any positive real constants α and β, by Cauchy-Schwarz for vectors, we should have

$$
\begin{aligned}
\|\alpha \mathbf{e}+\beta \mathbf{1}\|\|\mathbf{v}\| & \geq\langle\alpha \mathbf{e}+\beta \mathbf{1}, \mathbf{v}\rangle=\alpha\langle\mathbf{e}, \mathbf{v}\rangle+\beta\langle\mathbf{1}, \mathbf{v}\rangle \\
& =\alpha \cdot \sum x_{i}+\beta \cdot \sum x_{i}\left|A_{i}\right| \\
& \geq(\alpha+\ell \beta) \sum x_{i}
\end{aligned}
$$

Set $\mathbf{w}:=\alpha \mathbf{e}+\beta \mathbf{1}$ for brevity. Then

$$
\mathbf{w}[p, q]= \begin{cases}\alpha+\beta & \text { if } p=q \\ \beta & \text { if } p \neq q\end{cases}
$$

so

$$
\|\mathbf{w}\|=\sqrt{n \cdot(\alpha+\beta)^{2}+\left(n^{2}-n\right) \cdot \beta^{2}} .
$$

Therefore, we get an lower bound

$$
\frac{\|\mathbf{v}\|}{\sum x_{i}} \geq \frac{\alpha+\ell \beta}{\sqrt{n \cdot(\alpha+\beta)^{2}+\left(n^{2}-n\right) \cdot \beta^{2}}}
$$

Letting $\alpha=n-\ell$ and $\beta=\ell-1$ gives a proof that the constant

$$
c=\frac{((n-\ell)+\ell(\ell-1))^{2}}{n \cdot(n-1)^{2}+\left(n^{2}-n\right) \cdot(\ell-1)^{2}}=\frac{\left(n+\ell^{2}-2 \ell\right)^{2}}{n(n-1)\left(n+\ell^{2}-2 \ell\right)}=\frac{n+\ell^{2}-2 \ell}{n(n-1)}
$$

makes the original inequality always true. (The choice of $\alpha: \beta$ is suggested by the example below.)

【 Example showing this c is best possible. Let $k=\binom{n}{\ell}$, let A_{i} run over all $\binom{n}{\ell}$ subsets of $\{1, \ldots, n\}$ of size ℓ, and let $x_{i}=1$ for all i. We claim this construction works.

To verify this, it would be sufficient to show that \mathbf{w} and \mathbf{v} are scalar multiples, so that the above Cauchy-Schwarz is equality. However, we can compute

$$
\mathbf{w}[p, q]=\left\{\begin{array}{ll}
n-1 & \text { if } p=q \\
\ell-1 & \text { if } p \neq q
\end{array}, \quad \mathbf{v}[p, q]= \begin{cases}\binom{n-1}{\ell-1} \cdot \frac{1}{\ell} & \text { if } p=q \\
\binom{n-2}{\ell-2} \cdot \frac{1}{\ell} & \text { if } p \neq q\end{cases}\right.
$$

which are indeed scalar multiples, finishing the proof.

