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This is a compilation of solutions for the 2023 USAMO. The ideas of the
solution are a mix of my own work, the solutions provided by the competition
organizers, and solutions found by the community. However, all the writing
is maintained by me.

These notes will tend to be a bit more advanced and terse than the “official”
solutions from the organizers. In particular, if a theorem or technique is not
known to beginners but is still considered “standard”, then I often prefer to
use this theory anyways, rather than try to work around or conceal it. For
example, in geometry problems I typically use directed angles without further
comment, rather than awkwardly work around configuration issues. Similarly,
sentences like “let R denote the set of real numbers” are typically omitted
entirely.

Corrections and comments are welcome!
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§0 Problems
1. In an acute triangle ABC, let M be the midpoint of BC. Let P be the foot of

the perpendicular from C to AM . Suppose that the circumcircle of triangle ABP
intersects line BC at two distinct points B and Q. Let N be the midpoint of AQ.
Prove that NB = NC.

2. Solve over the positive real numbers the functional equation

f(xy + f(x)) = xf(y) + 2.

3. Consider an n-by-n board of unit squares for some odd positive integer n. We say
that a collection C of identical dominoes is a maximal grid-aligned configuration on
the board if C consists of (n2 − 1)/2 dominoes where each domino covers exactly
two neighboring squares and the dominoes don’t overlap: C then covers all but
one square on the board. We are allowed to slide (but not rotate) a domino
on the board to cover the uncovered square, resulting in a new maximal grid-
aligned configuration with another square uncovered. Let k(C) be the number
of distinct maximal grid-aligned configurations obtainable from C by repeatedly
sliding dominoes.
Find all possible values of k(C) as a function of n.

4. Positive integers a and N are fixed, and N positive integers are written on a
blackboard. Alice and Bob play the following game. On Alice’s turn, she must
replace some integer n on the board with n+ a, and on Bob’s turn he must replace
some even integer n on the board with n/2. Alice goes first and they alternate
turns. If on his turn Bob has no valid moves, the game ends.
After analyzing the N integers on the board, Bob realizes that, regardless of what
moves Alice makes, he will be able to force the game to end eventually. Show
that, in fact, for this value of a and these N integers on the board, the game is
guaranteed to end regardless of Alice’s or Bob’s moves.

5. Let n ≥ 3 be an integer. We say that an arrangement of the numbers 1, 2, . . . , n2

in an n× n table is row-valid if the numbers in each row can be permuted to form
an arithmetic progression, and column-valid if the numbers in each column can be
permuted to form an arithmetic progression.
For what values of n is it possible to transform any row-valid arrangement into a
column-valid arrangement by permuting the numbers in each row?

6. Let ABC be a triangle with incenter I and excenters Ia, Ib, Ic opposite A, B, and
C, respectively. Given an arbitrary point D on the circumcircle of 4ABC that does
not lie on any of the lines IIa, IbIc, or BC, suppose the circumcircles of 4DIIa
and 4DIbIc intersect at two distinct points D and F . If E is the intersection of
lines DF and BC, prove that ∠BAD = ∠EAC.
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§1 Solutions to Day 1
§1.1 USAMO 2023/1, proposed by Holden Mui
Available online at https://aops.com/community/p27349297.

Problem statement

In an acute triangle ABC, let M be the midpoint of BC. Let P be the foot of
the perpendicular from C to AM . Suppose that the circumcircle of triangle ABP
intersects line BC at two distinct points B and Q. Let N be the midpoint of AQ.
Prove that NB = NC.

We show several different approaches. In all solutions, let D denote the foot of the
altitude from A.

A

B CD
M

P

Q

N

R

¶ Most common synthetic approach. The solution hinges on the following claim:

Claim — Q coincides with the reflection of D across M .

Proof. Note that ]ADC = ]APC = 90◦, so ADPC is cyclic. Then by power of a point
(with the lengths directed),

MB ·MQ = MA ·MP = MC ·MD.

Since MB = MC, the claim follows.

It follows that MN ‖ AD, as M and N are respectively the midpoints of AQ and DQ.
Thus MN ⊥ BC, and so N lies on the perpendicular bisector of BC, as needed.
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Remark (David Lin). One can prove the main claim without power of a point as well, as
follows: Let R be the foot from B to AM , so BRCP is a parallelogram. Note that ABDR
is cyclic, and hence

]DRM = ]DBA = QBA = ]QPA = ]QPM.

Thus, DR ‖ PQ, so DRQP is also a parallelogram.

¶ Synthetic approach with no additional points at all.

Claim — 4BPC ∼ 4ANM (oppositely oriented).

Proof. We have 4BMP ∼ 4AMQ from the given concyclicity of ABPQ. Then

BM

BP
=

AM

AQ
=⇒ 2BM

BP
=

AM

AQ/2
=⇒ BC

BP
=

AM

AN

implying the similarity (since ]MAQ = ]BPM).

This similarity gives us the equality of directed angles

] (BC,MN) = −] (PC,AM) = 90◦

as desired.

¶ Synthetic approach using only the point R. Again let R be the foot from B to AM ,
so BRCP is a parallelogram.

Claim — ARQC is cyclic; equivalently, 4MAQ ∼ 4MCR.

Proof. MR ·MA = MP ·MA = MB ·MQ = MC ·MQ.

Note that in 4MCR, the M -median is parallel to CP and hence perpendicular to
RM . The same should be true in 4MAQ by the similarity, so MN ⊥MQ as needed.

¶ Cartesian coordinates approach with power of a point. Suppose we set B = (−1, 0),
M = (0, 0), C = (1, 0), and A = (a, b). One may compute:

←−→
AM : 0 = bx− ay ⇐⇒ y =

b

a
x

←→
CP : 0 = a(x− 1) + by ⇐⇒ y = −a

b
(x− 1) = −a

b
x+

a

b
.

P =

(
a2

a2 + b2
,

ab

a2 + b2

)

Now note that
AM =

√
a2 + b2, PM =

a√
a2 + b2

together with power of a point

AM · PM = BM ·QM

to immediately deduce that Q = (a, 0). Hence N = (0, b/2) and we’re done.

4

http://web.evanchen.cc


USAMO 2023 Solution Notes web.evanchen.cc, updated 15 April 2024

¶ Cartesian coordinates approach without power of a point (outline). After computing
A and P as above, one could also directly calculate

Perpendicular bisector of AB : y = −a+ 1

b
x+

a2 + b2 − 1

2b

Perpendicular bisector of PB : y = −
(
2a

b
+

b

a

)
x− b

2a

Perpendicular bisector of PA : y = −a

b
x+

a+ a2 + b2

2b
.

Circumcenter of 4PAB =

(
−a+ 1

2
,
2a2 + 2a+ b2

2b

)
.

This is enough to extract the coordinates of Q = (•, 0), because B = (−1, 0) is given,
and the x-coordinate of the circumcenter should be the average of the x-coordinates of
B and Q. In other words, Q = (−a, 0). Hence, N =

(
0, b

2

)
, as needed.

¶ Ill-advised barycentric approach (outline). Use reference triangle ABC. The A-
median is parametrized by (t : 1 : 1) for t ∈ R. So because of CP ⊥ AM , we are looking
for t such that (

t ~A+ ~B + ~C

t+ 2
− ~C

)
⊥

(
A−

~B + ~C

2

)
.

This is equivalent to (
t ~A+ ~B − (t+ 1)~C

)
⊥
(
2 ~A− ~B − ~C

)
.

By the perpendicularity formula for barycentric coordinates (EGMO 7.16), this is equiva-
lent to

0 = a2t− b2 · (3t+ 2) + c2 · (2− t)

=
(
a2 − 3b2 − c2

)
t− 2(b2 − c2)

=⇒ t =
2(b2 − c2)

a2 − 3b2 − c2
.

In other words,
P =

(
2(b2 − c2) : a2 − 3b2 − c2 : a2 − 3b2 − c2

)
.

A long calculation gives a2yP zP + b2zPxP + c2xP yP = (a2 − 3b2 − c2)(a2 − b2 + c2)(a2 −
2b2 − 2c2). Together with xP + yP + zP = 2a2 − 4b2 − 4c2, this makes the equation of
(ABP ) as

0 = −a2yz − b2zx− c2xy +
a2 − b2 + c2

2
z(x+ y + z).

To solve for Q, set x = 0 to get to get

a2yz =
a2 − b2 + c2

2
z(y + z) =⇒ y

z
=

a2 − b2 + c2

a2 + b2 − c2
.

In other words,
Q =

(
0 : a2 − b2 + c2 : a2 + b2 − c2

)
.

Taking the average with A = (1, 0, 0) then gives

N =
(
2a2 : a2 − b2 + c2 : a2 + b2 − c2

)
.

The equation for the perpendicular bisector of BC is given by (see EGMO 7.19)

0 = a2(z − y) + x(c2 − b2)

which contains N , as needed.
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¶ Extremely ill-advised complex numbers approaches (outline). Suppose we pick a,
b, c as the unit circle, and let m = (b+ c)/2. Using the fully general “foot” formula, one
can get

p =
(a−m)c+ (a−m)c+ am− am

2(a−m)
=

a2b− a2c− ab2 − 2abc− ac2 + b2c+ 3bc2

4bc− 2a(b+ c)

Meanwhile, an extremely ugly calculation will eventually yield

q =
bc
a + b+ c− a

2

so

n =
a+ q

2
=

a+ b+ c+ bc
a

4
=

(a+ b)(a+ c)

2a
.

There are a few ways to then verify NB = NC. The simplest seems to be to verify that

n− b+c
2

b− c
=

a− b− c+ bc
a

4(b− c)
=

(a− b)(a− c)

2a(b− c)

is pure imaginary, which is clear.
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§1.2 USAMO 2023/2, proposed by Carl Schildkraut
Available online at https://aops.com/community/p27349314.

Problem statement

Solve over the positive real numbers the functional equation

f(xy + f(x)) = xf(y) + 2.

The answer is f(x) ≡ x+ 1, which is easily verified to be the only linear solution.
We show conversely that f is linear. Let P (x, y) be the assertion.

Claim — f is weakly increasing.

Proof. Assume for contradiction a > b but f(a) < f(b). Choose y such that ay + f(a) =

by + f(b), that is y = f(b)−f(a)
a−b . Then P (a, y) and P (b, y) gives af(y) + 2 = bf(y) + 2,

which is impossible.

Claim (Up to an error of 2, f is linear) — We have

|f(x)− (Kx+ C)| ≤ 2

where K := 2
f(1) and C := f(f(1))− 2 are constants.

Proof. Note P (1, y) gives f(y + f(1)) = f(y) + 2 . Hence, f(nf(1)) = 2(n−1)+f(f(1))

for n ≥ 1. Combined with weakly increasing, this gives

2

⌊
x

f(1)

⌋
+ C ≤ f(x) ≤ 2

⌈
x

f(1)

⌉
+ C

which implies the result.

Rewrite the previous claim to the simpler f(x) = Kx+O(1). Then for any x and y,
the above claim gives

K (xy +Kx+O(1)) +O(1) = xf(y) + 2

which means that
x ·
(
Ky +K2 − f(y)

)
= O(1).

If we fix y and consider large x, we see this can only happen if Ky +K2 − f(y) = 0, i.e.
f is linear.
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§1.3 USAMO 2023/3, proposed by Holden Mui
Available online at https://aops.com/community/p27349464.

Problem statement

Consider an n-by-n board of unit squares for some odd positive integer n. We say
that a collection C of identical dominoes is a maximal grid-aligned configuration on
the board if C consists of (n2−1)/2 dominoes where each domino covers exactly two
neighboring squares and the dominoes don’t overlap: C then covers all but one square
on the board. We are allowed to slide (but not rotate) a domino on the board to cover
the uncovered square, resulting in a new maximal grid-aligned configuration with
another square uncovered. Let k(C) be the number of distinct maximal grid-aligned
configurations obtainable from C by repeatedly sliding dominoes.

Find all possible values of k(C) as a function of n.

The answer is that

k(C) ∈

{
1, 2, . . . ,

(
n− 1

2

)2
}
∪

{(
n+ 1

2

)2
}
.

Index the squares by coordinates (x, y) ∈ {1, 2, . . . , n}2. We say a square is special if
it is empty or it has the same parity in both coordinates as the empty square.

We now proceed in two cases:

¶ The special squares have both odd coordinates. We construct a directed graph
G = G(C) whose vertices are special squares as follows: for each domino on a special
square s, we draw a directed edge from s to the special square that domino points to.
Thus all special squares have an outgoing edge except the empty cell.

Claim — Any undirected connected component of G is acyclic unless the cycle
contains the empty square inside it.

Proof. Consider a cycle of G; we are going to prove that the number of chessboard cells
enclosed is always odd.
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This can be proven directly by induction, but for theatrical effect, we use Pick’s
theorem. Mark the center of every chessboard cell on or inside the cycle to get a lattice.
The dominoes of the cycle then enclose a polyominoe which actually consists of 2 × 2
squares, meaning its area is a multiple of 4.

Hence B/2+ I − 1 is a multiple of 4, in the notation of Pick’s theorem. As B is twice the
number of dominoes, and a parity argument on the special squares shows that number is
even, it follows that B is also a multiple of 4 (these correspond to blue and black in the
figure above). This means I is odd (the red dots in the figure above), as desired.

Let T be the connected component containing the empty cell. By the claim, T is
acyclic, so it’s a tree. Now, notice that all the arrows point along T towards the empty
cell, and moving a domino corresponds to flipping an arrow. Therefore:

Claim — k(C) is exactly the number of vertices of T .

Proof. Starting with the underlying tree, the set of possible graphs is described by picking
one vertex to be the sink (the empty cell) and then directing all arrows towards it.

This implies that k(C) ≤
(
n+1
2

)2 in this case. Equality is achieved if T is a spanning
tree of G. One example of a way to achieve this is using the snake configuration below.

Remark. In Russia 1997/11.8 it’s shown that as long as the missing square is a corner, we
have G = T . The proof is given implicitly from our work here: when the empty cell is in a
corner, it cannot be surrounded, ergo the resulting graph has no cycles at all. And since the
overall graph has one fewer edge than vertex, it’s a tree.

Conversely, suppose T was not a spanning tree, i.e. T 6= G. Since in this odd-odd case,
G has one fewer edge than vertex, if G is not a tree, then it must contain at least one
cycle. That cycle encloses every special square of T . In particular, this means that T
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can’t contain any special squares from the outermost row or column of the n× n grid. In
this situation, we therefore have k(C) ≤

(
n−3
2

)2.
¶ The special squares have both even coordinates. We construct the analogous graph
G on the same special squares. However, in this case, some of the points may not have
outgoing edges, because their domino may “point” outside the grid.

As before, the connected component T containing the empty square is a tree, and
k(C) is exactly the number of vertices of T . Thus to finish the problem we need to give,
for each k ∈ {1, 2, . . . ,

(
n−1
2

)2}, an example of a configuration where G has exactly k
vertices.

The construction starts with a “snake” picture for k =
(
n−1
2

)2, then decreases k by one
by perturbing a suitable set of dominoes. Rather than write out the procedure in words,
we show the sequence of nine pictures for n = 7 (where k = 9, 8, . . . , 1); the generalization
to larger n is straightforward.
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§2 Solutions to Day 2
§2.1 USAMO 2023/4, proposed by Carl Schildkraut
Available online at https://aops.com/community/p27349336.

Problem statement

Positive integers a and N are fixed, and N positive integers are written on a
blackboard. Alice and Bob play the following game. On Alice’s turn, she must
replace some integer n on the board with n+ a, and on Bob’s turn he must replace
some even integer n on the board with n/2. Alice goes first and they alternate turns.
If on his turn Bob has no valid moves, the game ends.

After analyzing the N integers on the board, Bob realizes that, regardless of what
moves Alice makes, he will be able to force the game to end eventually. Show that,
in fact, for this value of a and these N integers on the board, the game is guaranteed
to end regardless of Alice’s or Bob’s moves.

For N = 1, there is nothing to prove. We address N ≥ 2 only henceforth. Let S denote
the numbers on the board.

Claim — When N ≥ 2, if ν2(x) < ν2(a) for all x ∈ S, the game must terminate no
matter what either player does.

Proof. The ν2 of a number is unchanged by Alice’s move and decreases by one on Bob’s
move. The game ends when every ν2 is zero.

Hence, in fact the game will always terminate in exactly
∑

x∈S ν2(x) moves in this
case, regardless of what either player does.

Claim — When N ≥ 2, if there exists a number x on the board such that ν2(x) ≥
ν2(a), then Alice can cause the game to go on forever.

Proof. Denote by x the first entry of the board (its value changes over time). Then
Alice’s strategy is to:

• Operate on the first entry if ν2(x) = ν2(a) (the new entry thus has ν2(x+a) > ν2(a));

• Operate on any other entry besides the first one, otherwise.

A double induction then shows that

• Just before each of Bob’s turns, ν2(x) > ν2(a) always holds; and

• After each of Bob’s turns, ν2(x) ≥ ν2(a) always holds.

In particular Bob will never run out of legal moves, since halving x is always legal.
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§2.2 USAMO 2023/5, proposed by Ankan Bhattacharya
Available online at https://aops.com/community/p27349487.

Problem statement

Let n ≥ 3 be an integer. We say that an arrangement of the numbers 1, 2, . . . , n2

in an n× n table is row-valid if the numbers in each row can be permuted to form
an arithmetic progression, and column-valid if the numbers in each column can be
permuted to form an arithmetic progression.

For what values of n is it possible to transform any row-valid arrangement into a
column-valid arrangement by permuting the numbers in each row?

Answer: n prime only.

¶ Proof for n prime. Suppose n = p. In an arithmetic progression with p terms, it’s
easy to see that either every term has a different residue modulo p (if the common
difference is not a multiple of p), or all of the residues coincide (when the common
difference is a multiple of p).

So, look at the multiples of p in a row-valid table; there is either 1 or p per row. As
there are p such numbers total, there are two cases:

• If all the multiples of p are in the same row, then the common difference in each
row is a multiple of p. In fact, it must be exactly p for size reasons. In other words,
up to permutation the rows are just the k (mod p) numbers in some order, and this
is obviously column-valid because we can now permute such that the kth column
contains exactly {(k − 1)p+ 1, (k − 1)p+ 2, . . . , kp}.

• If all the multiples of p are in different rows, then it follows each row contains every
residue modulo p exactly once. So we can permute to a column-valid arrangement
by ensuring the kth column contains all the k (mod p) numbers.

¶ Counterexample for n composite (due to Anton Trygub). Let p be any prime
divisor of n. Construct the table as follows:

• Row 1 contains 1 through n.

• Rows 2 through p+ 1 contain the numbers from p+ 1 to np+ n partitioned into
arithmetic progressions with common difference p.

• The rest of the rows contain the remaining numbers in reading order.
For example, when p = 2 and n = 10, we get the following table:

1 2 3 4 5 6 7 8 9 10
11 13 15 17 19 21 23 25 27 29
12 14 16 18 20 22 24 26 28 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100
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We claim this works fine. Assume for contradiction the rows may be permuted to obtain
a column-valid arrangement. Then the n columns should be arithmetic progressions
whose smallest element is in [1, n] and whose largest element is in [n2 − n+ 1, n2]. These
two elements must be congruent modulo n− 1, so in particular the column containing 2
must end with n2 − n+ 2.

Hence in that column, the common difference must in fact be exactly n. And yet n+2
and 2n+ 2 are in the same row, contradiction.
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§2.3 USAMO 2023/6, proposed by Zack Chroman
Available online at https://aops.com/community/p27349354.

Problem statement

Let ABC be a triangle with incenter I and excenters Ia, Ib, Ic opposite A, B, and
C, respectively. Given an arbitrary point D on the circumcircle of 4ABC that does
not lie on any of the lines IIa, IbIc, or BC, suppose the circumcircles of 4DIIa and
4DIbIc intersect at two distinct points D and F . If E is the intersection of lines
DF and BC, prove that ∠BAD = ∠EAC.

Here are two approaches.

A

B C

D

E

I

M

Ia

Ib

Ic

F

¶ Barycentric coordinates (Carl Schildkraut). With reference triangle 4ABC, set
D = (r : s : t).

Claim — The equations of (DIIa) and (DIbIc) are, respectively,

0 = −a2yz − b2zx− c2xy + (x+ y + z) ·
(
bcx− bcr

cs− bt
(cy − bz)

)
0 = −a2yz − b2zx− c2xy + (x+ y + z) ·

(
−bcx+

bcr

cs+ bt
(cy + bz)

)
.

Proof. Since D ∈ (ABC), we have a2st + b2tr + c2rs = 0. Now each equation can be
verified by direct substitution of three points.

By EGMO Lemma 7.24, the radical axis is then given by

DF : bcx− bcr

cs− bt
(cy − bz) = −bcx+

bcr

cs+ bt
(cy + bz).
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Now the point (
0 :

b2

s
:
c2

t

)
=
(
0 : b2t : c2s

)
lies on line DF by inspection, and is obviously on line BC, hence it coincides with E.
This lies on the isogonal of AD (by EGMO Lemma 7.6), as needed.

¶ Synthetic approach (Anant Mudgal). Focus on just (DIIa). Let P be the second
intersection of (DIIa) with (ABC), and let M be the midpoint of minor arc B̃C. Then
by radical axis, lines AM , DP , and BC are concurrent at a point K.

Let E′ = PM ∩BC.

A

B C

D

E′

I

M

Ia

K

P

X

Claim — We have ]BAD = ]E′AC.

Proof. By shooting lemma, AKE′P is cyclic, so

]KAE′ = ]KPE′ = ]DPM = ]DAM.

Claim — The power of point E′ with respect to (DIIa) is 2E′B · E′C.

Proof. Construct parallelogram IE′IaX. Since MI2 = ME′ ·MP , we can get

]XIaI = ]IaIE
′ = ]MIE′ = ]MPI = ]XPI.

Hence X lies on (DIIa), and E′X · E′P = 2E′M · E′P = 2E′B · E′C.

Repeat the argument on (DIbIc); the same point E′ (because of the first claim) then
has power 2E′B ·E′C with respect to (DIbIc). Hence E′ lies on the radical axis of (DIIa)
and (DIbIc), ergo E′ = E. The first claim then solves the problem.
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