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This is a compilation of solutions for the 2021 USAMO. Some of the
solutions are my own work, but many are from the official solutions provided
by the organizers (for which they hold any copyrights), and others were found
by users on the Art of Problem Solving forums.

These notes will tend to be a bit more advanced and terse than the “official”
solutions from the organizers. In particular, if a theorem or technique is not
known to beginners but is still considered “standard”, then I often prefer to
use this theory anyways, rather than try to work around or conceal it. For
example, in geometry problems I typically use directed angles without further
comment, rather than awkwardly work around configuration issues. Similarly,
sentences like “let R denote the set of real numbers” are typically omitted
entirely.

Corrections and comments are welcome!
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§0 Problems
1. Rectangles BCC1B2, CAA1C2, and ABB1A2 are erected outside an acute triangle

ABC. Suppose that

∠BC1C + ∠CA1A+ ∠AB1B = 180◦.

Prove that lines B1C2, C1A2, and A1B2 are concurrent.

2. The Planar National Park is a undirected 3-regular planar graph (i.e. all vertices
have degree 3). A visitor walks through the park as follows: she begins at a vertex
and starts walking along an edge. When she reaches the other endpoint, she turns
left. On the next vertex she turns right, and so on, alternating left and right turns
at each vertex. She does this until she gets back to the vertex where she started.
What is the largest possible number of times she could have entered any vertex
during her walk, over all possible layouts of the park?

3. Let n ≥ 2 be an integer. An n× n board is initially empty. Each minute, you may
perform one of three moves:

• If there is an L-shaped tromino region of three cells without stones on the
board (see figure; rotations not allowed), you may place a stone in each of
those cells.

• If all cells in a column have a stone, you may remove all stones from that
column.

• If all cells in a row have a stone, you may remove all stones from that row.
For which n is it possible that, after some non-zero number of moves, the board
has no stones?

4. A finite set S of positive integers has the property that, for each s ∈ S, and
each positive integer divisor d of s, there exists a unique element t ∈ S satisfying
gcd(s, t) = d. (The elements s and t could be equal.)
Given this information, find all possible values for the number of elements of S.

5. Let n ≥ 4 be an integer. Find all positive real solutions to the following system of
2n equations:

a1 =
1

a2n
+

1

a2
, a2 = a1 + a3,

a3 =
1

a2
+

1

a4
, a4 = a3 + a5,

a5 =
1

a4
+

1

a6
, a6 = a5 + a7,

...
...

a2n−1 =
1

a2n−2
+

1

a2n
, a2n = a2n−1 + a1.
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6. Let ABCDEF be a convex hexagon satisfying AB ‖ DE, BC ‖ EF , CD ‖ FA,
and

AB ·DE = BC · EF = CD · FA.

Let X, Y , and Z be the midpoints of AD, BE, and CF . Prove that the circumcenter
of 4ACE, the circumcenter of 4BDF , and the orthocenter of 4XY Z are collinear.
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§1 Solutions to Day 1
§1.1 USAMO 2021/1, proposed by Ankan Bhattacharya
Available online at https://aops.com/community/p21498558.

Problem statement

Rectangles BCC1B2, CAA1C2, and ABB1A2 are erected outside an acute triangle
ABC. Suppose that

∠BC1C + ∠CA1A+ ∠AB1B = 180◦.

Prove that lines B1C2, C1A2, and A1B2 are concurrent.

The angle condition implies the circumcircles of the three rectangles concur at a single
point P .

A

B C

P

C1B2

A1

C2

B1

A2

Then ]CPB2 = ]CPA1 = 90◦, hence P lies on A1B2 etc., so we’re done.

Remark. As one might guess from the two-sentence solution, the entire difficulty of the
problem is getting the characterization of the concurrence point.
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§1.2 USAMO 2021/2, proposed by Zoran Sunic
Available online at https://aops.com/community/p21498640.

Problem statement

The Planar National Park is a undirected 3-regular planar graph (i.e. all vertices
have degree 3). A visitor walks through the park as follows: she begins at a vertex
and starts walking along an edge. When she reaches the other endpoint, she turns
left. On the next vertex she turns right, and so on, alternating left and right turns at
each vertex. She does this until she gets back to the vertex where she started. What
is the largest possible number of times she could have entered any vertex during her
walk, over all possible layouts of the park?

The answer is 3.
We consider the trajectory of the visitor as an ordered sequence of turns. A turn is

defined by specifying a vertex, the incoming edge, and the outgoing edge. Hence there
are six possible turns for each vertex.

Claim — Given one turn in the sequence, one can reconstruct the entire sequence
of turns.

Proof. This is clear from the process’s definition: given a turn t, one can compute the
turn after it and the turn before it.

This implies already that the trajectory of the visitor, when extended to an infinite
sequence, is totally periodic (not just eventually periodic), because there are finitely
many possible turns, so some turn must be repeated. So, any turn appears at most once
in the period of the sequence, giving a naïve bound of 6 for the original problem.

However, the following claim improves the bound to 3.

Claim — It is impossible for both of the turns a → b → c and c → b → a to occur
in the same trajectory.

Proof. If so, then extending the path, we get a → b → c → d → e → · · · and · · · → e →
d → c → b → a, as illustrated below in red and blue respectively.
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a

b

c

d

e

However, we assumed for contradiction the red and blue paths were part of the same
trajectory, yet they clearly never meet.

It remains to give a construction showing 3 can be achieved. There are many, many
valid constructions. One construction due to Danielle Wang is given here, who provided
the following motivation: “I was lying in bed and drew the first thing I could think of”.
The path is CAHIFGDBAHEFGJBAC which visits A three times.

2, 9

16

8, 15

1
7

11 5, 12

13

6

3

10
4

14

A B

C D

E F G

H I J

Remark. As the above example shows it is possible to transverse an edge more than once
even in the same direction, as in edge AH above.

6

http://web.evanchen.cc


USAMO 2021 Solution Notes web.evanchen.cc, updated 25 February 2024

§1.3 USAMO 2021/3, proposed by Alex Zhai, Shaunak Kishore
Available online at https://aops.com/community/p21498538.

Problem statement

Let n ≥ 2 be an integer. An n× n board is initially empty. Each minute, you may
perform one of three moves:

• If there is an L-shaped tromino region of three cells without stones on the
board (see figure; rotations not allowed), you may place a stone in each of
those cells.

• If all cells in a column have a stone, you may remove all stones from that
column.

• If all cells in a row have a stone, you may remove all stones from that row.

For which n is it possible that, after some non-zero number of moves, the board has
no stones?

The answer is 3 | n.

Construction: For n = 3, the construction is fairly straightforward, shown below.

This can be extended to any 3 | n.

Polynomial-based proof of converse: Assume for contradiction 3 - n. We will
show the task is impossible even if we allow stones to have real weights in our process. A
valid elimination corresponds to a polynomial P ∈ R[x, y] such that

degx P ≤ n− 2

degy P ≤ n− 2

(1 + x+ y)P (x, y) ∈
〈
1 + x+ · · ·+ xn−1, 1 + y + · · ·+ yn−1

〉
.

(Here 〈. . . 〉 is an ideal of R[x, y].) In particular, if S is the set of nth roots of unity other
than 1, we should have

(1 + z1 + z2)P (z1, z2) = 0

for any z1, z2 ∈ S. Since 3 - n, it follows that 1 + z1 + z2 6= 0 always.
So P vanishes on S×S, a contradiction to the bounds on degP (by, say, combinatorial

nullstellensatz on any nonzero term).
Linear algebraic proof of converse (due to William Wang): Suppose there is a

valid sequence of moves. Call rj the number of operations clearing row j, indexing from
bottom-to-top. The idea behind the solution is that we are going to calculate, for each
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cell, the number of times it is operated on entirely as a function of rj . For example, a
hypothetical illustration with n = 6 is partially drawn below, with the number in each
cell denoting how many times it was the corner of an L.

0 0 0 0 0 0
c1 c2 c3 = r3 c4 = r5 − r4 c5 = r5 0
...

... r2 + r3 − r5 r5 − r3 r4 0
...

... r1 + r2 + r3 − r4 − r5 r5 − r2 r3 0
...

... r1 + r2 + r4 − r5 r5 − r1 r2 0
...

... r1 + r4 − r5 r5 r1 0


Let ai,j be the expression in (i, j). It will also be helpful to define ci in the obvious way
as well.

Claim — We have cn = rn = 0, an−1,j = rj and ai,n−1 = ci.

Proof. The first statement follows since (n, n) may never obtain a stone. The equation
an−1,j = rj follows as both equal the number of times that cell (n, j) obtains a stone.
The final equation is similar.

Claim — For 1 ≤ i, j ≤ n− 1, the following recursion holds:

ai,j + ai+1,j + ai+1,j−1 = rj + ci+1.

Proof. Focus on cell (i+ 1, j). The left-hand side counts the number of times that gains
a stone while the right-hand side counts the number of times it loses a stone; they must
be equal.

We can coerce the table above into matrix form now as follows. Define

K =



−1 −1 0 0 . . . 0 0 0
0 −1 −1 0 . . . 0 0 0
0 0 −1 −1 . . . 0 0 0
...

...
...

... . . . ...
...

...
0 0 0 0 . . . −1 −1 0
0 0 0 0 . . . 0 −1 −1
1 1 1 1 . . . 1 1 0


.

Then define a sequence of matrices Mi recursively by Mn−1 = id, and

Mi = id+KMi+1 = id+K + · · ·+Kn−1−i.

The matrices are chosen so that, by construction,

〈r1, . . . , rn−1〉Mi = 〈ai,1, . . . , ai,n−1〉

for i = 1, 2, . . . , n− 1. On the other hand, we can extend the recursion one level deeper
and obtain

〈r1, . . . , rn−1〉M0 = 〈0, . . . , 0〉 .

However, the crux of the solution is the following.
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Claim — The eigenvalues of K are exactly −(1 + e
2πik
n ) for k = 1, 2, . . . , n− 1.

Proof. The matrix −(K+ id) is fairly known to have roots of unity as the coefficients.

However, we are told that apparently

0 = detM0 = det
(
id+K +K2 + · · ·+Kn−1

)
which means det(Kn − id) = 0. This can only happen if Kn has eigenvalue 1, meaning
that

[−(1 + ω)]n = 1

for ω some nth root of unity, not necessarily primitive. This can only happen if |1 + ω| = 1,
ergo 3 | n.
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§2 Solutions to Day 2
§2.1 USAMO 2021/4, proposed by Carl Schildkraut
Available online at https://aops.com/community/p21498580.

Problem statement

A finite set S of positive integers has the property that, for each s ∈ S, and
each positive integer divisor d of s, there exists a unique element t ∈ S satisfying
gcd(s, t) = d. (The elements s and t could be equal.)

Given this information, find all possible values for the number of elements of S.

The answer is that |S| must be a power of 2 (including 1), or |S| = 0 (a trivial case we
do not discuss further).

¶ Construction. For any nonnegative integer k, a construction for |S| = 2k is given by

S = {(p1 or q1)× (p2 or q2)× · · · × (pk or qk)}

for 2k distinct primes p1, . . . , pk, q1, . . . , qk.

¶ Converse. The main claim is as follows.

Claim — In any valid set S, for any prime p and x ∈ S, νp(x) ≤ 1.

Proof. Assume for contradiction e = νp(x) ≥ 2.

• On the one hand, by taking x in the statement, we see e
e+1 of the elements of S

are divisible by p.

• On the other hand, consider a y ∈ S such that νp(y) = 1 which must exist (say
if gcd(x, y) = p). Taking y in the statement, we see 1

2 of the elements of S are
divisible by p.

So e = 1, contradiction.

Now since |S| equals the number of divisors of any element of S, we are done.
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§2.2 USAMO 2021/5, proposed by Mohsen Jamaali
Available online at https://aops.com/community/p21498967.

Problem statement

Let n ≥ 4 be an integer. Find all positive real solutions to the following system of
2n equations:

a1 =
1

a2n
+

1

a2
, a2 = a1 + a3,

a3 =
1

a2
+

1

a4
, a4 = a3 + a5,

a5 =
1

a4
+

1

a6
, a6 = a5 + a7,

...
...

a2n−1 =
1

a2n−2
+

1

a2n
, a2n = a2n−1 + a1.

The answer is that the only solution is (1, 2, 1, 2, . . . , 1, 2) which works.
We will prove a2k is a constant sequence, at which point the result is obvious.

¶ First approach (Andrew Gu). Apparently, with indices modulo 2n, we should have

a2k =
1

a2k−2
+

2

a2k
+

1

a2k+2

for every index k (this eliminates all aodd’s). Define

m = min
k

a2k and M = max
k

a2k.

Look at the indices i and j achieving m and M to respectively get

m =
2

m
+

1

a2i−2
+

1

a2i+2
≥ 2

m
+

1

M
+

1

M
=

2

m
+

2

M

M =
2

M
+

1

a2j−2
+

1

a2j+2
≤ 2

M
+

1

m
+

1

m
=

2

m
+

2

M
.

Together this gives m ≥ M , so m = M . That means a2i is constant as i varies, solving
the problem.

¶ Second approach (author’s solution). As before, we have

a2k =
1

a2k−2
+

2

a2k
+

1

a2k+2

The proof proceeds in three steps.

• Define
S =

∑
k

a2k, and T =
∑
k

1

a2k
.

Summing gives S = 4T . On the other hand, Cauchy-Schwarz says S · T ≥ n2, so
T ≥ 1

2n.
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• On the other hand,
1 =

1

a2k−2a2k
+

2

a22k
+

1

a2ka2k+2

Sum this modified statement to obtain

n =
∑
k

(
1

a2k
+

1

a2k+2

)2 QM-AM
≥ 1

n

(∑
k

1

a2k
+

1

a2k+2

)2

=
1

n
(2T )2

So T ≤ 1
2n.

• Since T ≤ 1
2n and T ≥ 1

2n, we must have equality everywhere above. This means
a2k is a constant sequence.

Remark. The problem is likely intractable over C, in the sense that one gets a high-degree
polynomial which almost certainly has many complex roots. So it seems likely that most
solutions must involve some sort of inequality, using the fact we are over R>0 instead.
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§2.3 USAMO 2021/6, proposed by Ankan Bhattacharya
Available online at https://aops.com/community/p21498548.

Problem statement

Let ABCDEF be a convex hexagon satisfying AB ‖ DE, BC ‖ EF , CD ‖ FA, and

AB ·DE = BC · EF = CD · FA.

Let X, Y , and Z be the midpoints of AD, BE, and CF . Prove that the circum-
center of 4ACE, the circumcenter of 4BDF , and the orthocenter of 4XY Z are
collinear.

We present two solutions.

¶ Parallelogram solution found by contestants. Note that the following figure is
intentionally not drawn to scale, to aid legibility. We construct parallelograms ABCE′,
etc as shown. Note that this gives two congruent triangles A′C ′E′ and B′D′F ′. (Assuming
that triangle XY Z is non-degenerate, the triangles A′C ′E′ and B′D′F ′ will also be non-
degenerate.)

B

C

D E

F

A

A′

C ′

E′

B′
D′

F ′

X

M

N

Claim — If AB ·DE = BC · EF = CD · FA = k, then the circumcenters of ACE
and A′C ′E′ coincide.

Proof. The power of A to (A′C ′E′) is AE′ ·AC ′ = BC ·EF = k; same for C and E.
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A′

C ′

E′

B′D′

F ′

XY

Z

Claim — Triangle XY Z is the vector average of the (congruent) medial triangles
of triangles A′C ′E′ and B′D′F ′.

Proof. If M and N are the midpoints of C ′E′ and B′F ′, then X is the midpoint of MN
by vector calculation:

~M + ~N

2
=

~C′+ ~E′

2 +
~B′+~F ′

2

2

=
~C ′ + ~E′ + ~B′ + ~F ′

4

=
( ~A+ ~E − ~F ) + (~C + ~A− ~B) + ( ~D + ~F − ~E) + ( ~B + ~D − ~C)

4

=
~A+ ~D

2
= ~X.

Hence the orthocenter of XY Z is the midpoint of the orthocenters of the medial triangles
of A′C ′E′ and B′D′F ′ — that is, their circumcenters.

¶ Author’s solution. Call MNP and UVW the medial triangles of ACE and BDF .
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M

N

P

U

V

W

A

C

E

B

D

F

X Y

Z

Claim — In trapezoid ABDE, the perpendicular bisector of XY is the same as
the perpendicular bisector of the midline WN .

Proof. This is true for any trapezoid: because WX = 1
2AB = Y N .

Claim — The points V , W , M , N are cyclic.

Proof. By power of a point from Y , since

WY · Y N =
1

2
DE · 1

2
AB =

1

2
EF · 1

2
BC = V Y · YM.

Applying all the cyclic variations of the above two claims, it follows that all six points
U , V , W , M , N , P are concyclic, and the center of that circle coincides with the
circumcenter of 4XY Z.

Remark. It is also possible to implement ideas from the first solution here, by showing all
six midpoints have equal power to (XY Z).

Claim — The orthocenter of XY Z is the midpoint of the circumcenters of 4ACE
and 4BDF .

Proof. Apply complex numbers with the unit circle coinciding with the circumcircle of
NV PWMU . Then

orthocenter(XY Z) = x+ y + z =
a+ b+ c+ d+ e+ f

2
circumcenter(ACE) = orthocenter(MNP )
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= m+ n+ p =
c+ e

2
+

e+ a

2
+

a+ c

2
= a+ c+ e

circumcenter(BDF ) = orthocenter(UVW )

= u+ v + w =
d+ f

2
+

f + b

2
+

b+ d

2
= b+ d+ f.
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