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§0 Problems

1. Let ABC be a fixed acute triangle inscribed in a circle ω with center O. A variable
point X is chosen on minor arc AB of ω, and segments CX and AB meet at D.
Denote by O1 and O2 the circumcenters of triangles ADX and BDX, respectively.
Determine all points X for which the area of triangle OO1O2 is minimized.

2. An empty 2020× 2020× 2020 cube is given, and a 2020× 2020 grid of square unit
cells is drawn on each of its six faces. A beam is a 1× 1× 2020 rectangular prism.
Several beams are placed inside the cube subject to the following conditions:

• The two 1× 1 faces of each beam coincide with unit cells lying on opposite
faces of the cube. (Hence, there are 3 · 20202 possible positions for a beam.)

• No two beams have intersecting interiors.

• The interiors of each of the four 1× 2020 faces of each beam touch either a
face of the cube or the interior of the face of another beam.

What is the smallest positive number of beams that can be placed to satisfy these
conditions?

3. Let p be an odd prime. An integer x is called a quadratic non-residue if p does not
divide x− t2 for any integer t.

Denote by A the set of all integers a such that 1 ≤ a < p, and both a and 4− a are
quadratic non-residues. Calculate the remainder when the product of the elements
of A is divided by p.

4. Suppose that (a1, b1), (a2, b2), . . . , (a100, b100) are distinct ordered pairs of non-
negative integers. Let N denote the number of pairs of integers (i, j) satisfying
1 ≤ i < j ≤ 100 and |aibj − ajbi| = 1. Determine the largest possible value of N
over all possible choices of the 100 ordered pairs.

5. A finite set S of points in the coordinate plane is called overdetermined if |S| ≥ 2
and there exists a nonzero polynomial P (t), with real coefficients and of degree at
most |S| − 2, satisfying P (x) = y for every point (x, y) ∈ S.

For each integer n ≥ 2, find the largest integer k (in terms of n) such that there
exists a set of n distinct points that is not overdetermined, but has k overdetermined
subsets.

6. Let n ≥ 2 be an integer. Let x1 ≥ x2 ≥ · · · ≥ xn and y1 ≥ y2 ≥ · · · ≥ yn be 2n real
numbers such that

0 = x1 + x2 + · · ·+ xn = y1 + y2 + · · ·+ yn,

and 1 = x21 + x22 + · · ·+ x2n = y21 + y22 + · · ·+ y2n.

Prove that
n∑
i=1

(xiyi − xiyn+1−i) ≥
2√
n− 1

.
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§1 USAMO 2020/1, proposed by Zuming Feng

Let ABC be a fixed acute triangle inscribed in a circle ω with center O. A variable point X is

chosen on minor arc AB of ω, and segments CX and AB meet at D. Denote by O1 and O2 the

circumcenters of triangles ADX and BDX, respectively. Determine all points X for which the

area of triangle OO1O2 is minimized.

We prove [OO1O2] ≥ 1
4 [ABC], with equality if and only if CX ⊥ AB.

First approach (Bobby Shen) We use two simultaneous inequalities:

• Let M and N be the midpoints of CX and DX. Then MN equals the length
of the O-altitude of 4OO1O2, since O1O2 and DX meet at N at a right angle.
Moreover, we have

MN =
1

2
CD ≥ 1

2
ha

where ha denotes the A-altitude.

• The projection of O1O2 onto line AB has length exactly AB/2. Thus

O1O2 ≥
1

2
AB.

So, we find

[OO1O2] =
1

2
·MN ·O1O2 ≥

1

8
ha ·AB =

1

4
[ABC].

Note that equality occurs in both cases if and only if CX ⊥ AB. So the area is minimized
exactly when this occurs.

Second approach (Evan’s solution) We need two claims.

Claim — We have 4OO1O2 ∼ 4CBA, with opposite orientation.

Proof. Notice that OO1 ⊥ AX and O1O2 ⊥ CX, so ]OO1O2 = ]AXC = ]ABC.
Similarly ]OO2O1 = ]BAC.

Therefore, the problem is equivalent to minimizing O1O2.
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C
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Claim (Salmon theorem) — We have 4XO1O2 ∼ 4XAB.

Proof. It follows from the fact that 4AO1X ∼ 4BO2X (since ]ADX = ]XDB =⇒
]XO1A = ]XO2B) and that spiral similarities come in pairs.

Let θ = ∠ADX. The ratio of similarity in the previous claim is equal to XO1
XA = 1

2 sin θ .
In other words,

O1O2 =
AB

2 sin θ
.

This is minimized when θ = 90◦, in which case O1O2 = AB/2 and [OO1O2] = 1
4 [ABC].

This completes the solution.
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§2 USAMO 2020/2, proposed by Alex Zhai

An empty 2020× 2020× 2020 cube is given, and a 2020× 2020 grid of square unit cells is drawn
on each of its six faces. A beam is a 1× 1× 2020 rectangular prism. Several beams are placed
inside the cube subject to the following conditions:

• The two 1× 1 faces of each beam coincide with unit cells lying on opposite faces of the
cube. (Hence, there are 3 · 20202 possible positions for a beam.)

• No two beams have intersecting interiors.

• The interiors of each of the four 1× 2020 faces of each beam touch either a face of the cube
or the interior of the face of another beam.

What is the smallest positive number of beams that can be placed to satisfy these conditions?

Answer: 3030 beams.

Construction: We first give a construction with 3n/2 beams for any n× n× n box,
where n is an even integer. Shown below is the construction for n = 6, which generalizes.
(The left figure shows the cube in 3d; the right figure shows a direct view of the three
visible faces.)

Left face Right face

Top face

To be explicit, impose coordinate axes such that one corner of the cube is the origin. We
specify a beam by two opposite corners. The 3n/2 beams come in three directions, n/2
in each direction:

• (0, 0, 0)→ (1, 1, n), (2, 2, 0)→ (3, 3, n), (4, 4, 0)→ (5, 5, n), and so on;

• (1, 0, 0)→ (2, n, 1), (3, 0, 2)→ (4, n, 3), (5, 0, 4)→ (6, n, 5), and so on;

• (0, 1, 1)→ (n, 2, 2), (0, 3, 3)→ (n, 4, 4), (0, 5, 5)→ (n, 6, 6), and so on.

This gives the figure we drew earlier and shows 3030 beams is possible.

Necessity: We now show at least 3n/2 beams are necessary. Maintain coordinates,
and call the beams x-beams, y-beams, z-beams according to which plane their long edges
are perpendicular too. Let Nx, Ny, Nz be the number of these.
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Claim — If min(Nx, Ny, Nz) = 0, then at least n2 beams are needed.

Proof. Assume WLOG that Nz = 0. Orient the cube so the z-plane touches the ground.
Then each of the n layers of the cube (from top to bottom) must be completely filled,
and so at least n2 beams are necessary,

We henceforth assume min(Nx, Ny, Nz) > 0.

Claim — If Nz > 0, then we have Nx +Ny ≥ n.

Proof. Again orient the cube so the z-plane touches the ground. We see that for each of
the n layers of the cube (from top to bottom), there is at least one x-beam or y-beam.
(Pictorially, some of the x and y beams form a “staircase”.) This completes the proof.

Proceeding in a similar fashion, we arrive at the three relations

Nx +Ny ≥ n
Ny +Nz ≥ n
Nz +Nx ≥ n.

Summing gives Nx +Ny +Nz ≥ 3n/2 too.

Remark. The problem condition has the following “physics” interpretation. Imagine the
cube is a metal box which is sturdy enough that all beams must remain orthogonal to the
faces of the box (i.e. the beams cannot spin). Then the condition of the problem is exactly
what is needed so that, if the box is shaken or rotated, the beams will not move.

Remark. Walter Stromquist points out that the number of constructions with 3030 beams
is actually enormous: not dividing out by isometries, the number is (2 · 1010!)3.
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§3 USAMO 2020/3, proposed by Richard Stong and Toni
Bluher

Let p be an odd prime. An integer x is called a quadratic non-residue if p does not divide x− t2
for any integer t.

Denote by A the set of all integers a such that 1 ≤ a < p, and both a and 4− a are quadratic

non-residues. Calculate the remainder when the product of the elements of A is divided by p.

The answer is that
∏
a∈A a ≡ 2 (mod p) regardless of the value of p. Here is the official

solution, where we always work in Fp.
We define

A = {a ∈ Fp | a, 4− a not qr}
B = {b ∈ Fp | b, 4− b qr, b 6= 0, b 6= 4} .

Note that a ∈ A ⇐⇒ 4− a ∈ A and b ∈ B ⇐⇒ 4− b ∈ B.
We now do the following magical calculation in Fp:∏

b∈B
b =

∏
b∈B

(4− b) =
∏

1≤y≤(p−1)/2
y 6=2

4−y2 is qr

(4− y2)

=
∏

1≤y≤(p−1)/2
y 6=2

4−y2 is qr

(2 + y)
∏

1≤y≤(p−1)/2
y 6=2

4−y2 is qr

(2− y)

=
∏

1≤y≤(p−1)/2
y 6=2

4−y2 is qr

(2 + y)
∏

(p+1)/2≤y≤p−1
y 6=p−2

4−y2 is qr

(2 + y)

=
∏

1≤y≤p−1
y 6=2,p−2
4−y2 is qr

(2 + y)

=
∏

3≤z≤p+1
z 6=4,p

z(4−z) is qr

z

=
∏

0≤z≤p−1
z 6=0,4,2

z(4−z) is qr

z.

Note z(4− z) is a nonzero quadratic residue if and only if z ∈ A ∪B. So the right-hand
side is almost the product over z ∈ A ∪B, except it is missing the z = 2 term. Adding it
in gives ∏

b∈B
b =

1

2

∏
0≤z≤p−1
z 6=0,4

z(4−z) is qr

z =
1

2

∏
a∈A

a
∏
b∈B

b.

This gives
∏
a∈A a = 2 as desired.
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§4 USAMO 2020/4, proposed by Ankan Bhattacharya

Suppose that (a1, b1), (a2, b2), . . . , (a100, b100) are distinct ordered pairs of nonnegative integers.

Let N denote the number of pairs of integers (i, j) satisfying 1 ≤ i < j ≤ 100 and |aibj − ajbi| = 1.

Determine the largest possible value of N over all possible choices of the 100 ordered pairs.

The answer is 197. In general, if 100 is replaced by n ≥ 2 the answer is 2n− 3.
The idea is that if we let Pi = (ai, bi) be a point in the coordinate plane, and let

O = (0, 0) then we wish to maximize the number of triangles 4OPiPj which have area
1/2. Call such a triangle good.

Construction of 197 points: It suffices to use the points (1, 0), (1, 1), (2, 1), (3, 1),
. . . , (99, 1) as shown. Notice that:

• There are 98 good triangles with vertices (0, 0), (k, 1) and (k+1, 1) for k = 1, . . . , 98.

• There are 99 good triangles with vertices (0, 0), (1, 0) and (k, 1) for k = 1, . . . , 99.

This is a total of 98 + 99 = 197 triangles.

O (1, 0)

(1, 1) (2, 1) (3, 1) (4, 1) · · ·

Proof that 197 points is optimal: We proceed by induction on n to show the bound
of 2n− 3. The base case n = 2 is evident.

For the inductive step, suppose (without loss of generality) that the point P = Pn =
(a, b) is the farthest away from the point O among all points.

Claim — This farthest point P = Pn is part of at most two good triangles.

Proof. We must have gcd(a, b) = 1 for P to be in any good triangles at all, since otherwise
any divisor of gcd(a, b) also divides 2[OPQ]. Now, we consider the locus of all points Q
for which [OPQ] = 1/2. It consists of two parallel lines passing with slope OP , as shown.
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(u, v)

(u′, v′)

O

P = (a, b)

Since gcd(a, b) = 1, see that only two lattice points on this locus actually lie inside the
quarter-circle centered at O with radius OP . Indeed if one of the points is (u, v) then the
others on the line are (u± a, v ± b) where the signs match. This proves the claim.

This claim allows us to complete the induction by simply deleting Pn.
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§5 USAMO 2020/5, proposed by Carl Schildkraut

A finite set S of points in the coordinate plane is called overdetermined if |S| ≥ 2 and there
exists a nonzero polynomial P (t), with real coefficients and of degree at most |S| − 2, satisfying
P (x) = y for every point (x, y) ∈ S.

For each integer n ≥ 2, find the largest integer k (in terms of n) such that there exists a set of

n distinct points that is not overdetermined, but has k overdetermined subsets.

We claim the answer is k = 2n−1 − n. We denote the n points by A.
Throughout the solution we will repeatedly use the following fact:

Lemma

If S is a finite set of points in the plane there is at most one polynomial with real
coefficients and of degree at most |S| − 1 whose graph passes through all points of S.

Proof. If any two of the points have the same x-coordinate then obviously no such
polynomial may exist at all.

Otherwise, suppose f and g are two such polynomials. Then f − g has degree at most
|S| − 1, but it has |S| roots, so is the zero polynomial.

Remark. Actually Lagrange interpolation implies that such a polynomial exists as long as
all the x-coordinates are different!

Construction: Consider the set A = {(1, a), (2, b), (3, b), (4, b), . . . , (n, b)}, where a
and b are two distinct nonzero real numbers. Any subset of the latter n− 1 points with
at least one element is overdetermined, and there are 2n−1 − n such sets.

Bound: Say a subset S of A is flooded if it is not overdetermined. For brevity, an
m-set refers simply to a subset of A with m elements.

Claim — If S is an flooded m-set for m ≥ 3, then at most one (m− 1)-subset of S
is not flooded.

Proof. Let S = {p1, . . . , pm} be flooded. Assume for contradiction that S − {pi} and
S − {pj} are both overdetermined. Then we can find polynomials f and g of degree at
most m− 3 passing through S − {pi} and S − {pj}, respectively.

Since f and g agree on S − {pi, pj}, which has m− 2 elements, by the lemma we have
f = g. Thus this common polynomial (actually of degree at most m− 3) witnesses that
S is overdetermined, which is a contradiction.

Claim — For all m = 2, 3, . . . , n there are at least
(
n−1
m−1

)
flooded m-sets of A.

Proof. The proof is by downwards induction on m. The base case m = n is by assumption.
For the inductive step, suppose it’s true for m. Each of the

(
n−1
m−1

)
flooded m-sets has at

least m− 1 flooded (m− 1)-subsets. Meanwhile, each (m− 1)-set has exactly n− (m− 1)
parent m-sets. We conclude the number of flooded sets of size m− 1 is at least

m− 1

n− (m− 1)

(
n− 1

m− 1

)
=

(
n− 1

m− 2

)
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as desired.

This final claim completes the proof, since it shows there are at most

n∑
m=2

((
n

m

)
−
(
n− 1

m− 1

))
= 2n−1 − n

overdetermined sets, as desired.

Remark (On repeated x-coordinates). Suppose A has two points p and q with repeated x-
coordinates. We can argue directly that A satisfies the bound. Indeed, any overdetermined set
contains at most one of p and q. Moreover, given S ⊆ A−{p, q}, if S∪{p} is overdetermined
then S ∪ {q} is not, and vice-versa. (Recall that overdetermined sets always have distinct
x-coordinates.) This gives a bound

[
2n−2 − (n− 2)− 1

]
+
[
2n−2 − 1

]
= 2n−1 − n already.

Remark (Alex Zhai). An alternative approach to the double-counting argument is to show
that any overdetermined m-set has an flooded m-superset. Together with the first claim,
this lets us pair overdetermined sets in a way that implies the bound.
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§6 USAMO 2020/6, proposed by David Speyer and Kiran
Kedlaya

Let n ≥ 2 be an integer. Let x1 ≥ x2 ≥ · · · ≥ xn and y1 ≥ y2 ≥ · · · ≥ yn be 2n real numbers such
that

0 = x1 + x2 + · · ·+ xn = y1 + y2 + · · ·+ yn,

and 1 = x21 + x22 + · · ·+ x2n = y21 + y22 + · · ·+ y2n.

Prove that
n∑

i=1

(xiyi − xiyn+1−i) ≥
2√
n− 1

.

We present two approaches. In both approaches, it’s helpful motivation that for even
n, equality occurs at

(xi) =
( 1√

n
, . . . ,

1√
n︸ ︷︷ ︸

n/2

,− 1√
n
, . . . ,− 1√

n︸ ︷︷ ︸
n/2

)

(yi) =
( n− 1√

n(n− 1)
,− 1√

n(n− 1)
, . . . ,− 1√

n(n− 1)︸ ︷︷ ︸
n−1

)

First approach (expected value) For a permutation σ on {1, 2, . . . , n} we define

Sσ =

n∑
i=1

xiyσ(i).

Claim — For random permutations σ, E[Sσ] = 0 and E[S2
σ] = 1

n−1 .

Proof. The first one is clear.
Since

∑
i<j 2xixj = −1, it follows that (for fixed i and j), E[yσ(i)yσ(j)] = − 1

n(n−1) ,
Thus ∑

i

x2i · E
[
y2σ(i)

]
=

1

n

2
∑
i<j

xixj · E
[
yσ(i)yσ(j)

]
= (−1) · 1

n(n− 1)

the conclusion follows.

Claim (A random variable in [0, 1] has variance at most 1/4) — If A is a random
variable with mean µ taking values in the closed interval [m,M ] then

E[(A− µ)2] ≤ 1

4
(M −m)2.
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Proof. By shifting and scaling, we may assume m = 0 and M = 1, so A ∈ [0, 1] and
hence A2 ≤ A. Then

E[(A− µ)2] = E[A2]− µ2 ≤ E[A]− µ2 = µ− µ2 ≤ 1

4
.

This concludes the proof.

Thus the previous two claims together give

max
σ

Sσ −min
σ
Sσ ≥

√
4

n− 1
=

2√
n− 1

.

But
∑

i xiyi = maxσ Sσ and
∑

i xiyn+1−i = minσ Sσ by rearrangement inequality and
therefore we are done.

Outline of second approach (by convexity, due to Alex Zhai) We will instead prove
a converse result: given the hypotheses

• x1 ≥ · · · ≥ xn
• y1 ≥ · · · ≥ yn
•
∑

i xi =
∑

i yi = 0

•
∑

i xiyi −
∑

i xiyn+1−i = 2√
n−1

we will prove that
∑
x2i
∑
y2i ≤ 1.

Fix the choice of y’s. We see that we are trying to maximize a convex function in n
variables (x1, . . . , xn) over a convex domain (actually the intersection of two planes with
several half planes). So a maximum can only happen at the boundaries: when at most
two of the x’s are different.

An analogous argument applies to y. In this way we find that it suffices to consider
situations where x• takes on at most two different values. The same argument applies to
y•.

At this point the problem can be checked directly.
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