
USAMO 2018 Solution Notes
Evan Chen《陳誼廷》

13 May 2024

This is a compilation of solutions for the 2018 USAMO. The ideas of the
solution are a mix of my own work, the solutions provided by the competition
organizers, and solutions found by the community. However, all the writing
is maintained by me.

These notes will tend to be a bit more advanced and terse than the “official”
solutions from the organizers. In particular, if a theorem or technique is not
known to beginners but is still considered “standard”, then I often prefer to
use this theory anyways, rather than try to work around or conceal it. For
example, in geometry problems I typically use directed angles without further
comment, rather than awkwardly work around configuration issues. Similarly,
sentences like “let R denote the set of real numbers” are typically omitted
entirely.

Corrections and comments are welcome!
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§0 Problems
1. Let a, b, c be positive real numbers such that a+ b+ c = 4 3

√
abc. Prove that

2(ab+ bc+ ca) + 4min(a2, b2, c2) ≥ a2 + b2 + c2.

2. Find all functions f : (0,∞) → (0,∞) such that

f

(
x+

1

y

)
+ f

(
y +

1

z

)
+ f

(
z +

1

x

)
= 1

for all x, y, z > 0 with xyz = 1.

3. Let n ≥ 2 be an integer, and let {a1, . . . , am} denote the m = ϕ(n) integers less
than n and relatively prime to n. Assume that every prime divisor of m also divides
n. Prove that m divides ak1 + · · ·+ akm for every positive integer k.

4. Let p be a prime, and let a1, . . . , ap be integers. Show that there exists an integer
k such that the numbers

a1 + k, a2 + 2k, . . . , ap + pk

produce at least 1
2p distinct remainders upon division by p.

5. Let ABCD be a convex cyclic quadrilateral with E = AC ∩BD, F = AB ∩ CD,
G = DA∩BC. The circumcircle of 4ABE intersects line CB at B and P , and the
circumcircle of 4ADE intersects line CD at D and Q. Assume C, B, P , G and C,
Q, D, F are collinear in that order. Let M = FP ∩GQ. Prove that ∠MAC = 90◦.

6. Let an be the number of permutations (x1, . . . , xn) of (1, . . . , n) such that the ratios
xk/k are all distinct. Prove that an is odd for all n ≥ 1.
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§1 Solutions to Day 1
§1.1 USAMO 2018/1, proposed by Titu Andreescu
Available online at https://aops.com/community/p10226140.

Problem statement

Let a, b, c be positive real numbers such that a+ b+ c = 4 3
√
abc. Prove that

2(ab+ bc+ ca) + 4min(a2, b2, c2) ≥ a2 + b2 + c2.

WLOG let c = min(a, b, c) = 1 by scaling. The given inequality becomes equivalent to

4ab+ 2a+ 2b+ 3 ≥ (a+ b)2 ∀a+ b = 4(ab)1/3 − 1.

Now, let t = (ab)1/3 and eliminate a+ b using the condition, to get

4t3 + 2(4t− 1) + 3 ≥ (4t− 1)2 ⇐⇒ 0 ≤ 4t3 − 16t2 + 16t = 4t(t− 2)2

which solves the problem.
Equality occurs only if t = 2, meaning ab = 8 and a+ b = 7, which gives

{a, b} =

{
7±

√
17

2

}

with the assumption c = 1. Scaling gives the curve of equality cases.
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§1.2 USAMO 2018/2, proposed by Titu Andreescu, Nikolai Nikolov
Available online at https://aops.com/community/p10226145.

Problem statement

Find all functions f : (0,∞) → (0,∞) such that

f

(
x+

1

y

)
+ f

(
y +

1

z

)
+ f

(
z +

1

x

)
= 1

for all x, y, z > 0 with xyz = 1.

The main part of the problem is to show all solutions are linear. As always, let x = b/c,
y = c/a, z = a/b (classical inequality trick). Then the problem becomes∑

cyc
f

(
b+ c

a

)
= 1.

Let f(t) = g( 1
t+1), equivalently g(s) = f(1/s− 1). Thus g : (0, 1) → (0, 1) which satisfies∑

cyc g
(

a
a+b+c

)
= 1, or equivalently

g(a) + g(b) + g(c) = 1 ∀a+ b+ c = 1.

The rest of the solution is dedicated to solving this equivalent functional equation
in g. It is a lot of technical details and I will only outline them (with apologies to the
contestants who didn’t have that luxury).

Claim — The function g is linear.

Proof. This takes several steps, all of which are technical. We begin by proving g is linear
over [1/8, 3/8].

• First, whenever a+ b ≤ 1 we have

1− g(1− (a+ b)) = g(a) + g(b) = 2g

(
a+ b

2

)
.

Hence g obeys Jensen’s functional equation over (0, 1/2).

• Define h : [0, 1] → R by h(t) = g(2t+1
8 ) − (1 − t) · g(1/8) − t · g(3/8), then h

satisfies Jensen’s functional equation too over [0, 1]. We have also arranged that
h(0) = h(1) = 0, hence h(1/2) = 0 as well.

• Since

h(t) = h(t) + h(1/2) = 2h(t/2 + 1/4) = h(t+ 1/2) + h(0) = h(t+ 1/2)

for any t < 1/2, we find h is periodic modulo 1/2. It follows one can extend h̃ by

h̃ : R → R by h̃(t) = h(t− btc)

and still satisfy Jensen’s functional equation. Because h̃(0) = 0, it’s well-known
this implies h̃ is additive (because h̃(x+ y) = 2h̃ ((x+ y)/2) = h̃(x) + h̃(y) for any
real numbers x to y).
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But h̃ is bounded below on [0, 1] since g ≥ 0, and since h̃ is also additive, it follows
(well-known) that h̃ is linear. Thus h is the zero function. So, the function g is linear
over [1/8, 3/8]; thus we may write g(x) = kx+ `, valid for 1/8 ≤ x ≤ 3/8.

Since 3g(1/3) = 1, it follows k + 3` = 1.
For 0 < x < 1/8 we have g(x) = 2g(0.15)−g(0.3−x) = 2(0.15k+`)−(k(0.3−x)+`) =

kx + `, so g is linear over (0, 3/8) as well. Finally, for 3/8 < x < 1, we use the given
equation

1 = g

(
1− x

2

)
+ g

(
1− x

2

)
+ g(x) =⇒ g(x) = 1− 2

(
k · 1− x

2
+ `

)
= kx+ `

since 1−x
2 < 5

16 < 3
8 . Thus g is linear over all.

Putting this back in, we deduce that g(x) = kx+ 1−k
3 for some k ∈ [−1/2, 1], and so

f(x) =
k

x+ 1
+

1− k

3

for some k ∈ [−1/2, 1]. All such functions work.
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§1.3 USAMO 2018/3, proposed by Ivan Borsenco
Available online at https://aops.com/community/p10226222.

Problem statement

Let n ≥ 2 be an integer, and let {a1, . . . , am} denote the m = ϕ(n) integers less
than n and relatively prime to n. Assume that every prime divisor of m also divides
n. Prove that m divides ak1 + · · ·+ akm for every positive integer k.

For brevity, given any n, we let A(n) = {1 ≤ x ≤ n, gcd(x, n) = 1} (thus |A(n)| = ϕ(n)).
Also, let S(n, k) =

∑
a∈A(n) a

k.
We will prove the stronger statement (which eliminates the hypothesis on n).

Claim — Let n ≥ 2 be arbitrary (and k ≥ 0). If p | n, then

νp(ϕ(n)) ≤ νp(S(n, k)).

We start with the special case where n is a prime power.

Lemma
Let p be prime, e ≥ 1, k ≥ 0. We always have

S(pe, k) =
∑

x∈A(pe)

xk ≡ 0 (mod pe−1).

Proof. For p odd, this follows by taking a primitive root g modulo pe. We will have

S(pe, k) ≡ 1 + gk + g2k + · · ·+ g(ϕ(p
e)−1)k ≡ gϕ(p

e)k − 1

gk − 1
.

If p− 1 - k, then the denominator is not divisible by p and hence the entire expression
is 0 (mod pe). In the other case where p− 1 | k, since νp(ϕ(p

e)) = e− 1, the exponent
lifting lemma implies

νp

(
(gk)ϕ(p

e) − 1
)
= νp(g

k − 1) + (e− 1)

and so the conclusion is true here too.
In the annoying case p = 2, the proof is broken into two cases: for k odd it follows

by pairing x with 2e − x and when k is even one can take 5 as a generator of all the
quadratic residues as in the p > 2 case.

Corollary
We have νp(1

k + · · ·+ tk) ≥ νp(t)− 1 for any k, t, p.

Proof. Assume p | t. Handle the terms in that sum divisible by p (by induction) and
apply the lemma a bunch of times.
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Now the idea is to add primes q one at a time to n, starting from the base case n = pe.
So, formally we proceed by induction on the number of prime divisors of n. We’ll also
assume k ≥ 1 in what follows since the base case k = 0 is easy.

• First, suppose we want to go from n to nq where q - n. In that case ϕ(nq) gained
νp(q− 1) factors of p and then we need to show νp(S(nq, k)) ≥ νp(ϕ(n))+ νp(q− 1).
The trick is to write

A(nq) = {a+ nh | a ∈ A(n) and h = 0, . . . , q − 1} \ qA(n)

and then expand using binomial theorem:

S(nq, k) =
∑

a∈A(n)

q−1∑
h=0

(a+ nh)k −
∑

a∈A(n)

(qa)k

= −qkS(n, k) +
∑

a∈A(n)

q−1∑
h=0

k∑
j=0

[(
k

j

)
ak−jnjhj

]

= −qkS(n, k) +

k∑
j=0

(k
j

)
nj

 ∑
a∈A(n)

ak−j

(q−1∑
h=0

hj

)
= −qkS(n, k) +

k∑
j=0

[(
k

j

)
njS(n, k − j)

(
q−1∑
h=1

hj

)]

= (q − qk)S(n, k) +
k∑

j=1

[(
k

j

)
njS(n, k − j)

(
q−1∑
h=1

hj

)]
.

We claim every term here has enough powers of p. For the first term, S(n, k) has
at least νp(ϕ(n)) factors of p; and we have the q − qk multiplier out there. For
the other terms, we apply induction to S(n, k − j); moreover

∑q−1
h=1 h

j has at least
νp(q − 1)− 1 factors of p by corollary, and we get one more factor of p (at least)
from nj .

• On the other hand, if q already divides n, then this time

A(nq) = {a+ nh | a ∈ A(n) and h = 0, . . . , q − 1} .

and we have no additional burden of p to deal with; the same calculation gives

S(nq, k) = qS(n, k) +
k∑

j=1

[(
k

j

)
njS(n, k − j)

(
q−1∑
h=1

hj

)]

which certainly has enough factors of p already.

Remark. A curious bit about the problem is that νp(ϕ(n)) can exceed νp(n), and so it is
not true that the residues of A(n) are well-behaved modulo ϕ(n).

As an example, let n = 2 · 3 · 7 · 13 = 546, so m = ϕ(n) = 1 · 2 · 6 · 12 = 144. Then A(n)
contains 26 elements which are 1 mod 9 and 23 elements which are 4 mod 9.
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Remark. The converse of the problem is true too (but asking both parts would make this
too long for exam).
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§2 Solutions to Day 2
§2.1 USAMO 2018/4, proposed by Ankan Bhattacharya
Available online at https://aops.com/community/p10232389.

Problem statement

Let p be a prime, and let a1, . . . , ap be integers. Show that there exists an integer k
such that the numbers

a1 + k, a2 + 2k, . . . , ap + pk

produce at least 1
2p distinct remainders upon division by p.

For each k = 0, . . . , p− 1 let Gk be the graph on {1, . . . , p} where we join {i, j} if and
only if

ai + ik ≡ aj + jk (mod p) ⇐⇒ k ≡ −ai − aj
i− j

(mod p).

So we want a graph Gk with at least 1
2p connected components.

However, each {i, j} appears in exactly one graph Gk, so some graph has at most
1
p

(
p
2

)
= 1

2(p − 1) edges (by “pigeonhole”). This graph has at least 1
2(p + 1) connected

components, as desired.

Remark. Here is an example for p = 5 showing equality can occur:
0 0 3 4 3
0 1 0 2 2
0 2 2 0 1
0 3 4 3 0
0 4 1 1 4

 .

Ankan Bhattacharya points out more generally that ai = i2 is sharp in general.
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§2.2 USAMO 2018/5, proposed by Kada Williams
Available online at https://aops.com/community/p10232392.

Problem statement

Let ABCD be a convex cyclic quadrilateral with E = AC ∩ BD, F = AB ∩ CD,
G = DA∩BC. The circumcircle of 4ABE intersects line CB at B and P , and the
circumcircle of 4ADE intersects line CD at D and Q. Assume C, B, P , G and C,
Q, D, F are collinear in that order. Let M = FP ∩GQ. Prove that ∠MAC = 90◦.

We present three general routes. (The second route, using the fact that AC is an angle
bisector, has many possible variations.)

¶ First solution (Miquel points). This is indeed a Miquel point problem, but the main
idea is to focus on the self-intersecting cyclic quadrilateral PBQD as the key player,
rather than on the given ABCD.

Indeed, we will prove that A is its Miquel point; this follows from the following two
claims.

Claim — The self-intersecting quadrilateral PQDB is cyclic.

Proof. By power of a point from C: CQ · CD = CA · CE = CB · CP .

Claim — Point E lies on line PQ.

Proof. ]AEP = ]ABP = ]ABC = ]ADC = ]ADQ = ]AEQ.

P B

Q

D

E

C

H

A

G

F

M

To finish, let H = PD ∩BQ. By properties of the Miquel point, we have A is the foot
from H to CE. But also, points M , A, H are collinear by Pappus theorem on BPG and
DQF , as desired.
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¶ Second solution (projective). We start with a synthetic observation.

Claim — The line AC bisects ∠PAD and ∠BAQ.

Proof. Angle chase: ]PAC = ]PAE = ]PBE = ]CBD = ]CAD.

There are three ways to finish from here:
• (Michael Kural) Suppose the external bisector of ∠PAD and ∠BAQ meet lines

BC and DC at X and Y . Then

−1 = (GP ;XC) = (FD;Y C)

which is enough to imply that XY , GQ, PF are concurrent (by so-called prism
lemma).

• (Daniel Liu) Alternatively, apply the dual Desargues involution theorem to complete
quadrilateral GQFPCM , through the point A. This gives that an involutive pairing
of

(AC,AM) (AP,AQ) (AG,AF ).

This is easier to see if we project it onto the line ` through C perpendicular to
AC: let P ′, Q′, G′, F ′ be the images of the last four lines, so C is the common
midpoint of F ′Q′ and G′P ′. Hence the involution swapping G′ ↔ F ′ and P ′ ↔ Q′

coincides with negative inversion through C with power
√
CP ′ · CQ′ which implies

that AM ∩ ` is an infinity point, as desired.

• (Kada Williams) The official solution instead shows the external angle bisector by
a long trig calculation.

¶ Third solution (inversion, Andrew Wu). Noting that CE ·CA = CP ·CB = CQ·CD,
we perform an inversion at C swapping these pairs of points. The point G is mapped to
a point G∗ ray CB for which QEG∗C is cyclic, but then

]CG∗E = ]CQE = ]CQP = ]DBC = ]CBE

and so we conclude EB = EG∗. Similarly, ED = EF ∗.
Finally, M∗ = (CG∗D) ∩ (CF ∗B) 6= C, and we wish to show that ∠EM∗C = 90◦.

D

B C

E

K

L

G∗

F ∗

M∗
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Note that M∗ is the center of the spiral similarity sending BG∗ to F ∗D. Hence it
also maps the midpoint K of BG∗ to the midpoint L of F ∗E. Consequently, M∗ lies
on the circumcircle KLC as well. In other words, ELCKM∗ is a cyclic pentagon with
circumdiameter CE, as desired.
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§2.3 USAMO 2018/6, proposed by Richard Stong
Available online at https://aops.com/community/p10232388.

Problem statement

Let an be the number of permutations (x1, . . . , xn) of (1, . . . , n) such that the ratios
xk/k are all distinct. Prove that an is odd for all n ≥ 1.

This is the official solution; the proof has two main insights.
The first idea:

Lemma
If a permutation x works, so does the inverse permutation.

Thus it suffices to consider permutations x in which all cycles have length at most 2.
Of course, there can be at most one fixed point (since that gives the ratio 1), and hence
exactly one if n is odd, none if n is even.

We consider the graph Kn such that the edge {i, j} is labeled with i/j (for i < j). The
permutations we’re considering are then equivalent to maximal matchings of this Kn.
We call such a matching fantastic if it has an all of distinct edge labels.

Now the second insight is that if edges ab and cd have the same label for a < b and
c < d, then so do edges ac and bd. Thus:

Definition. Given a matching M as above we say the neighbors of M are those other
matchings obtained as follows: for each label `, we take some disjoint pairs of edges
(possibly none) with label ` and apply the above switching operation (in which we replace
ab and cd with ac and bd).

This neighborship relation is reflexive, and most importantly it is symmetric (because
one can simply reverse the moves). But it is not transitive.

The second observation is that:

Claim — The matching M has an odd number of neighbors (including itself) if
and only if it is fantastic.

Proof. Consider the label `, and assume it appears n` ≥ 1 times.
If we pick k disjoint pairs and swap them, the number of ways to do this is

(
n`
2k

)
(2k−1)!!,

and so the total number of ways to perform operations on the edges labeled ` is∑
k

(
n`

2k

)
(2k − 1)!! ≡

∑
k

(
n`

2k

)
= 2n`−1 (mod 2).

This is even if and only if n` > 1.
Finally, note that the number of neighbors of M is the product across all ` of the

above. So it is odd if and only if each factor is odd, if and only if n` = 1 for every `.

To finish, consider a huge simple graph Γ on all the maximal matchings, with edge
relations given by neighbor relation (we don’t consider vertices to be connected to
themselves). Observe that:
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• Fantastic matchings correspond to isolated vertices (of degree zero, with no other
neighbors) of Γ.

• The rest of the vertices of Γ have odd degrees (one less than the neighbor count)

• The graph Γ has an even number of vertices of odd degree (this is true for any
simple graph, see “handshake lemma”).

• The number of vertices of Γ is odd, namely (2 dn/2e − 1)!!.

This concludes the proof.
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