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This is a compilation of solutions for the 2015 USAMO. The ideas of the
solution are a mix of my own work, the solutions provided by the competition
organizers, and solutions found by the community. However, all the writing
is maintained by me.

These notes will tend to be a bit more advanced and terse than the “official”
solutions from the organizers. In particular, if a theorem or technique is not
known to beginners but is still considered “standard”, then I often prefer to
use this theory anyways, rather than try to work around or conceal it. For
example, in geometry problems I typically use directed angles without further
comment, rather than awkwardly work around configuration issues. Similarly,
sentences like “let R denote the set of real numbers” are typically omitted
entirely.

Corrections and comments are welcome!
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§0 Problems
1. Solve in integers the equation

x2 + xy + y2 =

(
x+ y

3
+ 1

)3

.

2. Quadrilateral APBQ is inscribed in circle ω with ∠P = ∠Q = 90◦ and AP =
AQ < BP . Let X be a variable point on segment PQ. Line AX meets ω again at
S (other than A). Point T lies on arc AQB of ω such that XT is perpendicular to
AX. Let M denote the midpoint of chord ST .
As X varies on segment PQ, show that M moves along a circle.

3. Let S = {1, 2, . . . , n}, where n ≥ 1. Each of the 2n subsets of S is to be colored red
or blue. (The subset itself is assigned a color and not its individual elements.) For
any set T ⊆ S, we then write f(T ) for the number of subsets of T that are blue.
Determine the number of colorings that satisfy the following condition: for any
subsets T1 and T2 of S,

f(T1)f(T2) = f(T1 ∪ T2)f(T1 ∩ T2).

4. Steve is piling m ≥ 1 indistinguishable stones on the squares of an n×n grid. Each
square can have an arbitrarily high pile of stones. After he finished piling his stones
in some manner, he can then perform stone moves, defined as follows. Consider
any four grid squares, which are corners of a rectangle, i.e. in positions (i, k), (i, l),
(j, k), (j, l) for some 1 ≤ i, j, k, l ≤ n, such that i < j and k < l. A stone move
consists of either removing one stone from each of (i, k) and (j, l) and moving them
to (i, l) and (j, k) respectively, or removing one stone from each of (i, l) and (j, k)
and moving them to (i, k) and (j, l) respectively.
Two ways of piling the stones are equivalent if they can be obtained from one
another by a sequence of stone moves. How many different non-equivalent ways
can Steve pile the stones on the grid?

5. Let a, b, c, d, e be distinct positive integers such that a4 + b4 = c4 + d4 = e5. Show
that ac+ bd is a composite number.

6. Consider 0 < λ < 1, and let A be a multiset of positive integers. Let An = {a ∈
A : a ≤ n}. Assume that for every n ∈ N, the multiset An contains at most nλ
numbers. Show that there are infinitely many n ∈ N for which the sum of the
elements in An is at most n(n+1)

2 λ.
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§1 Solutions to Day 1
§1.1 USAMO 2015/1, proposed by Titu Andreescu
Available online at https://aops.com/community/p4769940.

Problem statement

Solve in integers the equation

x2 + xy + y2 =

(
x+ y

3
+ 1

)3

.

We do the trick of setting a = x+ y and b = x− y. This rewrites the equation as

1

4

(
(a+ b)2 + (a+ b)(a− b) + (a− b)2

)
=

(a
3
+ 1

)3

where a, b ∈ Z have the same parity. This becomes

3a2 + b2 = 4
(a
3
+ 1

)3

which is enough to imply 3 | a, so let a = 3c. Miraculously, this becomes

b2 = (c− 2)2(4c+ 1).

So a solution must have 4c+ 1 = m2, with m odd. This gives

x =
1

8

(
3(m2 − 1)± (m3 − 9m)

)
and y =

1

8

(
3(m2 − 1)∓ (m3 − 9m)

)
.

For mod 8 reasons, this always generates a valid integer solution, so this is the complete
curve of solutions. Actually, putting m = 2n+ 1 gives the much nicer curve

x = n3 + 3n2 − 1 and y = −n3 + 3n+ 1

and permutations.
For n = 0, 1, 2, 3 this gives the first few solutions are (−1, 1), (3, 3), (19,−1), (53,−17),

(and permutations).
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§1.2 USAMO 2015/2, proposed by Zuming Feng, Jacek Fabrykowski
Available online at https://aops.com/community/p4769957.

Problem statement

Quadrilateral APBQ is inscribed in circle ω with ∠P = ∠Q = 90◦ and AP = AQ <
BP . Let X be a variable point on segment PQ. Line AX meets ω again at S (other
than A). Point T lies on arc AQB of ω such that XT is perpendicular to AX. Let
M denote the midpoint of chord ST .

As X varies on segment PQ, show that M moves along a circle.

We present three solutions, one by complex numbers, two more synthetic. (A fourth
solution using median formulas is also possible.) Most solutions will prove that the center
of the fixed circle is the midpoint of AO (with O the center of ω); this can be recovered
empirically by letting

• X approach P (giving the midpoint of BP )

• X approach Q (giving the point Q), and

• X at the midpoint of PQ (giving the midpoint of BQ)

which determines the circle; this circle then passes through P by symmetry and we can
find the center by taking the intersection of two perpendicular bisectors (which two?).

¶ Complex solution (Evan Chen). Toss on the complex unit circle with a = −1, b = 1,
z = −1

2 . Let s and t be on the unit circle. We claim Z is the center.
It follows from standard formulas that

x =
1

2
(s+ t− 1 + s/t)

thus
4Rex+ 2 = s+ t+

1

s
+

1

t
+

s

t
+

t

s

which depends only on P and Q, and not on X. Thus

4

∣∣∣∣z − s+ t

2

∣∣∣∣2 = |s+ t+ 1|2 = 3 + (4Rex+ 2)

does not depend on X, done.

¶ Homothety solution (Alex Whatley). Let G, N , O denote the centroid, nine-point
center, and circumcenter of triangle AST , respectively. Let Y denote the midpoint of
AS. Then the three points X, Y , M lie on the nine-point circle of triangle AST , which
is centered at N and has radius 1

2AO.
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A

B

S

T

O

XP Q

M

G
N

Y

Let R denote the radius of ω. Note that the nine-point circle of 4AST has radius
equal to 1

2R, and hence is independent of S and T . Then the power of A with respect to
the nine-point circle equals

AN2 −
(
1

2
R

)2

= AX ·AY =
1

2
AX ·AS =

1

2
AQ2

and hence

AN2 =

(
1

2
R

)2

+
1

2
AQ2

which does not depend on the choice of X. So N moves along a circle centered at A.
Since the points O, G, N are collinear on the Euler line of 4AST with

GO =
2

3
NO

it follows by homothety that G moves along a circle as well, whose center is situated
one-third of the way from A to O. Finally, since A, G, M are collinear with

AM =
3

2
AG

it follows that M moves along a circle centered at the midpoint of AO.

¶ Power of a point solution (Zuming Feng, official solution). We complete the picture
by letting 4KYX be the orthic triangle of 4AST ; in that case line XY meets the ω
again at P and Q.
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A

B
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Y
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The main claim is:

Claim — Quadrilateral PQKM is cyclic.

Proof. To see this, we use power of a point: let V = QXY P ∩ SKMT . One approach is
that since (V K;ST ) = −1 we have V Q ·V P = V S ·V T = V K ·VM . A longer approach
is more elementary:

V Q · V P = V S · V T = V X · V Y = V K · VM

using the nine-point circle, and the circle with diameter ST .

But the circumcenter of PQKM , is the midpoint of AO, since it lies on the perpendicular
bisectors of KM and PQ. So it is fixed, the end.
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§1.3 USAMO 2015/3, proposed by Gabriel Carroll
Available online at https://aops.com/community/p4769949.

Problem statement

Let S = {1, 2, . . . , n}, where n ≥ 1. Each of the 2n subsets of S is to be colored red
or blue. (The subset itself is assigned a color and not its individual elements.) For
any set T ⊆ S, we then write f(T ) for the number of subsets of T that are blue.

Determine the number of colorings that satisfy the following condition: for any
subsets T1 and T2 of S,

f(T1)f(T2) = f(T1 ∪ T2)f(T1 ∩ T2).

For an n-coloring C (by which we mean a coloring of the subsets of {1, . . . , n}), define
the support of C as

supp(C) = {T | f(T ) 6= 0} .
Call a coloring nontrivial if supp(C) 6= ∅ (equivalently, the coloring is not all red). In
that case, notice that

• the support is closed under unions and intersections: since if f(T1)f(T2) 6= 0 then
necessarily both f(T1 ∩ T2) and f(T1 ∪ T2) are nonzero; and

• the support is obviously upwards closed.

Thus, the support must take the form

supp(C) = [X,S]
def
= {T | X ⊆ T ⊆ S}

for some set X (for example by letting X be the minimal (by size) element of the support).
Say C has full support if X = ∅ (equivalently, ∅ is blue).

Lemma
For a given n and B ⊆ {1, . . . , n}, there is exactly one n-coloring with full support
in which the singletons colored blue are exactly those in B. Therefore there are
exactly 2n n-colorings with full support.

Proof. To see there is at least one coloring, color only the subsets of B blue. In that case

f(T ) = 2|T∩B|

which satisfies the condition by Inclusion-Exclusion. To see this extension is unique, note
that f({b}) is determined for each b and we can then determine f(T ) inductively on |T |;
hence there is at most one way to complete a coloring of the singletons, which completes
the proof.

For a general nontrivial n-coloring C, note that if supp(C) = [X,S], then we can think
of it as an (n−|X|)-coloring with full support. For |X| = k, there are

(
n
k

)
possible choices

of X ⊆ S. Adding back in the trivial coloring, the final answer is

1 +
n∑

k=0

(
n

k

)
2k = 1 + 3n .
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Remark. To be more explicit, the possible nontrivial colorings are exactly described by
specifying two sets X and Y with X ⊆ Y , and coloring blue only the sets T with X ⊆ T ⊆ Y .

In particular, one deduces that in a working coloring, f(T ) is always either zero or a
power of two. If one manages to notice this while working on the problem, it is quite helpful
for motivating the solution, as it leads one to suspect that the working colorings have good
structure.
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§2 Solutions to Day 2
§2.1 USAMO 2015/4, proposed by Maria Monks Gillespie
Available online at https://aops.com/community/p4774079.

Problem statement

Steve is piling m ≥ 1 indistinguishable stones on the squares of an n× n grid. Each
square can have an arbitrarily high pile of stones. After he finished piling his stones
in some manner, he can then perform stone moves, defined as follows. Consider any
four grid squares, which are corners of a rectangle, i.e. in positions (i, k), (i, l), (j, k),
(j, l) for some 1 ≤ i, j, k, l ≤ n, such that i < j and k < l. A stone move consists of
either removing one stone from each of (i, k) and (j, l) and moving them to (i, l) and
(j, k) respectively, or removing one stone from each of (i, l) and (j, k) and moving
them to (i, k) and (j, l) respectively.

Two ways of piling the stones are equivalent if they can be obtained from one
another by a sequence of stone moves. How many different non-equivalent ways can
Steve pile the stones on the grid?

The answer is
(
m+n−1
n−1

)2. The main observation is that the ordered sequence of column
counts (i.e. the number of stones in the first, second, etc. column) is invariant under
stone moves, as does the analogous sequence of row counts.

¶ Definitions. Call these numbers (c1, c2, . . . , cn) and (r1, r2, . . . , rn) respectively, with∑
ci =

∑
ri = m. We say that the sequence (c1, . . . , cn, r1, . . . , rn) is the signature of

the configuration. These are the 2m blue and red numbers shown in the example below
(in this example we have m = 8 and n = 3).

c1 = 5 c2 = 2 c3 = 1

r1 = 3

r2 = 3

r3 = 2

Signature: (5, 2, 1; 3, 3, 2)

By stars-and-bars, the number of possible values (c1, . . . , cn) is
(
m+n−1
n−1

)
. The same is

true for (r1, . . . , rm). So if we’re just counting signatures, the total number of possible
signatures is

(
m+n−1
n−1

)2.
¶ Outline and setup. We are far from done. To show that the number of non-equivalent
ways is also this number, we need to show that signatures correspond to pilings. In other
words, we need to prove:

1. Check that signatures are invariant around moves (trivial; we did this already);
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2. Check conversely that two configurations are equivalent if they have the same
signatures (the hard part of the problem); and

3. Show that each signature is realized by at least one configuration (not immediate,
but pretty easy).

Most procedures to the second step are algorithmic in nature, but Ankan Bhattacharya
gives the following far cleaner approach. Rather than having a grid of stones, we simply
consider the multiset of ordered pairs (x, y) corresponding to the stones. Then:

• a stone move corresponds to switching two y-coordinates in two different pairs.

• we redefine the signature to be the multiset (X,Y ) of x and y coordinates which
appear. Explicitly, X is the multiset that contains ci copies of the number i for
each i.

For example, consider the earlier example which had

• Two stones each at (1, 1), (1, 2).

• One stone each at (1, 3), (2, 1), (2, 3), (3, 2).

Its signature can then be reinterpreted as

(5, 2, 1; 3, 3, 2)←→

{
X = {1, 1, 1, 1, 1, 2, 2, 3}
Y = {1, 1, 1, 2, 2, 2, 3, 3}.

In that sense, the entire grid is quite misleading!

¶ Proof that two configurations with the same signature are equivalent. The second
part is completed just because transpositions generate any permutation. To be explicit,
given two sets of stones, we can permute the labels so that the first set is (x1, y1), . . . ,
(xm, ym) and the second set of stones is (x1, y

′
1), . . . , (xm, y′m). Then we just induce the

correct permutation on (yi) to get (y′i).

¶ Proof that any signature has at least one configuration. Sort the elements of X
and Y arbitrarily (say, in non-decreasing order). Put a stone whose x-coordinate is the
ith element of X, and whose y-coordinate is the ith element of Y , for each i = 1, 2, . . . ,m.
Then this gives a stone placement of m stones with signature (X,Y ).

For example, if

X = {1, 1, 1, 1, 1, 2, 2, 3}
Y = {1, 1, 1, 2, 2, 2, 3, 3}

then placing stones at (1, 1), (1, 1), (1, 1), (1, 2), (1, 2), (2, 2), (2, 3), (3, 3) gives a valid
piling with this signature.
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§2.2 USAMO 2015/5, proposed by Mohsen Jamaali
Available online at https://aops.com/community/p4774020.

Problem statement

Let a, b, c, d, e be distinct positive integers such that a4 + b4 = c4 + d4 = e5. Show
that ac+ bd is a composite number.

Assume to the contrary that p = ac+ bd, so that

ac ≡ −bd (mod p)

=⇒ a4c4 ≡ b4d4 (mod p)

=⇒ a4(e5 − d4) ≡ (e5 − a4)d4 (mod p)

=⇒ a4e5 ≡ d4e5 (mod p)

=⇒ e5(a4 − d4) ≡ 0 (mod p)

and hence
p | e5(a− d)(a+ d)(a2 + d2).

Claim — We should have p > e.

Proof. We have e5 = a4 + b4 ≤ a5 + b5 < (ac+ bd)5 = p5.

Thus the above equation implies p ≤ max(a − d, a + d, a2 + d2) = a2 + d2. Similarly,
p ≤ b2 + c2. So

ac+ bd = p ≤ min
{
a2 + d2, b2 + c2

}
or by subtraction

0 ≤ min {a(a− c) + d(d− b), b(b− d) + c(c− a)} .

But since a4 + b4 = c4 + d4 the numbers a− c and d− b should have the same sign, and
so this is an obvious contradiction.
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§2.3 USAMO 2015/6, proposed by Iurie Boreico
Available online at https://aops.com/community/p4774023.

Problem statement

Consider 0 < λ < 1, and let A be a multiset of positive integers. Let An = {a ∈ A :
a ≤ n}. Assume that for every n ∈ N, the multiset An contains at most nλ numbers.
Show that there are infinitely many n ∈ N for which the sum of the elements in An

is at most n(n+1)
2 λ.

For brevity, #S denotes |S|. Let xn = nλ−#An ≥ 0. We now proceed by contradiction
by assuming the conclusion fails for n large enough; that is,

n(n+ 1)

2
λ <

∑
a∈An

a

= 1(#A1 −#A0) + 2(#A2 −#A1) + · · ·+ n(#An −#An−1)

= n#An − (#A1 + · · ·+ #An−1)

= n(nλ− xn)− [(λ− x1) + (2λ− x2) + · · ·+ ((n− 1)λ− xn−1)]

=
n(n+ 1)

2
λ− nxn + (x1 + · · ·+ xn−1).

This means that for all sufficiently large n, say n ≥ N0, we have

xn <
x1 + · · ·+ xn−1

n
∀n ≥ N0.

In particular, each xn is the less than the average of all preceding terms. Intuitively this
means xn should become close to each other, since they are also nonnegative.

However, we have a second condition we haven’t used yet: the “integer” condition
implies

|xn+1 − xn| = |λ−#{n ∈ A}| > ε

for some fixed ε > 0, namely ε = min {λ, 1− λ}. Using the fact that consecutive terms
differ by some fixed ε, we will derive a contradiction.

If we let M be the average of x1, . . . , xN0 , then we ought to have

xn < M ∀n > N0.

Hence for n > N0 we have xn + xn+1 < 2M − ε, and so for large enough n the average
must drop to just above M − 1

2ε. Thus for some large N1 > N0, we will have

xn < M − 1

3
ε ∀n > N1.

If we repeat this argument then with a large N2 > N1, we obtain

xn < M − 2

3
ε ∀n > N2

and so on and so forth. This is a clear contradiction.
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Remark. Note that if A = {2, 2, 3, 4, 5, . . . } and λ = 1 then contradiction. So the condition
that 0 < λ < 1 cannot be dropped, and (by scaling) neither can the condition that A ⊆ Z.

Remark (Suggested by Zhao Ting-wei). Despite the relation

xn <
x1 + · · ·+ xn−1

n
∀n ≥ N0

implying that xn is bounded, it does not alone imply that xn converges, not even to some
nonzero value. Zhao Ting-Wei showed me that one can have a sequence which is zero “every
so often” yet where the average is nonzero.

A counterexample is given explicitly by

xn =


1000 n = 1

0 n is a power of 10
1 + 1

n otherwise

which does not have a limit. For completeness, let’s check this — let Hn denote the n’th
harmonic number, and compute

n−1∑
1

xn = 1000 + (n− 1) +Hn−1 −
blog10 nc∑

k=1

(
1 +

1

10k

)
> n+ 999 +Hn−1 − log10 n−

(
1 +

1

10
+ . . .

)
> n+ 997 +Hn−1 − log10 n > n+ 1

so 1 + 1
n < 1

n

∑n−1
1 xn as needed.
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