
USAMO 2014 Solution Notes
Evan Chen《陳誼廷》

24 December 2023

This is a compilation of solutions for the 2014 USAMO. Some of the
solutions are my own work, but many are from the official solutions provided
by the organizers (for which they hold any copyrights), and others were found
by users on the Art of Problem Solving forums.

These notes will tend to be a bit more advanced and terse than the “official”
solutions from the organizers. In particular, if a theorem or technique is not
known to beginners but is still considered “standard”, then I often prefer to
use this theory anyways, rather than try to work around or conceal it. For
example, in geometry problems I typically use directed angles without further
comment, rather than awkwardly work around configuration issues. Similarly,
sentences like “let R denote the set of real numbers” are typically omitted
entirely.

Corrections and comments are welcome!
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§0 Problems
1. Let a, b, c, d be real numbers such that b− d ≥ 5 and all zeros x1, x2, x3, and x4

of the polynomial P (x) = x4 + ax3 + bx2 + cx+ d are real. Find the smallest value
the product (x21 + 1)(x22 + 1)(x23 + 1)(x24 + 1) can take.

2. Find all f : Z → Z such that

xf (2f(y)− x) + y2f (2x− f(y)) =
f(x)2

x
+ f (yf(y))

for all x, y ∈ Z such that x 6= 0.

3. Prove that there exists an infinite set of points

. . . , P−3, P−2, P−1, P0, P1, P2, P3, . . .

in the plane with the following property: For any three distinct integers a, b, and c,
points Pa, Pb, and Pc are collinear if and only if a+ b+ c = 2014.

4. Let k be a positive integer. Two players A and B play a game on an infinite grid of
regular hexagons. Initially all the grid cells are empty. Then the players alternately
take turns with A moving first. In her move, A may choose two adjacent hexagons
in the grid which are empty and place a counter in both of them. In his move, B
may choose any counter on the board and remove it. If at any time there are k
consecutive grid cells in a line all of which contain a counter, A wins. Find the
minimum value of k for which A cannot win in a finite number of moves, or prove
that no such minimum value exists.

5. Let ABC be a triangle with orthocenter H and let P be the second intersection of
the circumcircle of triangle AHC with the internal bisector of ∠BAC. Let X be
the circumcenter of triangle APB and let Y be the orthocenter of triangle APC.
Prove that the length of segment XY is equal to the circumradius of triangle ABC.

6. Prove that there is a constant c > 0 with the following property: If a, b, n are
positive integers such that gcd(a+ i, b+ j) > 1 for all i, j ∈ {0, 1, . . . , n}, then

min{a, b} > (cn)n/2.

2

http://web.evanchen.cc


USAMO 2014 Solution Notes web.evanchen.cc, updated 24 December 2023

§1 Solutions to Day 1
§1.1 USAMO 2014/1, proposed by Titu Andreescu
Available online at https://aops.com/community/p3477753.

Problem statement

Let a, b, c, d be real numbers such that b− d ≥ 5 and all zeros x1, x2, x3, and x4 of
the polynomial P (x) = x4 + ax3 + bx2 + cx+ d are real. Find the smallest value the
product (x21 + 1)(x22 + 1)(x23 + 1)(x24 + 1) can take.

The answer is 16 . This can be achieved by taking x1 = x2 = x3 = x4 = 1, whence the
product is 24 = 16, and b− d = 5.

We now show the quantity is always at least 16. We prove:

Claim — We always have (x21 +1)(x22 +1)(x23 +1)(x24 +1) = (b− d− 1)2 + (a− c)2.

Proof. Let i =
√
−1. The key observation is that

4∏
j=1

(
x2j + 1

)
=

4∏
j=1

(xj − i)(xj + i) = P (i)P (−i) = |P (i)|2.

Since P (i) = (−1 + b− d) + (c− a)i, the claim follows.

Since b− d− 1 ≥ 4, we get the desired lower bound of 42 + 02 = 16.
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§1.2 USAMO 2014/2, proposed by Titu Andreescu
Available online at https://aops.com/community/p3477690.

Problem statement

Find all f : Z → Z such that

xf (2f(y)− x) + y2f (2x− f(y)) =
f(x)2

x
+ f (yf(y))

for all x, y ∈ Z such that x 6= 0.

The answer is f(x) ≡ 0 and f(x) ≡ x2. Check that these work.
Now let’s prove these are the only solutions. Put y = 0 to obtain

xf (2f(0)− x) =
f(x)2

x
+ f(0).

The nicest part of the problem is the following step:

Claim — We have f(0) = 0

Proof. If not, select a prime p - f(0) and put x = p 6= 0. In the above, we find that
p | f(p)2, so p | f(p) and hence p | f(p)2

p . From here we derive p | f(0), contradiction.
Hence

f(0) = 0.

Claim — We have f(x) ∈ {0, x2} for each individual x.

Proof. The above then implies that

x2f(−x) = f(x)2

holds for all nonzero x, but also for x = 0. Let us now check that f is an even function.
In the above, we may also derive f(−x)2 = x2f(x). If f(x) 6= f(−x) (and hence x 6= 0),
then subtracting the above and factoring implies that f(x) + f(−x) = −x2; we can then
obtain by substituting the relation[

f(x) +
1

2
x2
]2

= −3

4
x4 < 0

which is impossible. This means f(x)2 = x2f(x), thus

f(x) ∈ {0, x2} ∀x.
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Now suppose there exists a nonzero integer t with f(t) = 0. We will prove that
f(x) ≡ 0. Put y = t in the given to obtain that

t2f(2x) = 0

for any integer x 6= 0, and hence conclude that f(2Z) ≡ 0. Then selecting x = 2k 6= 0 in
the given implies that

y2f(4k − f(y)) = f(yf(y)).

Assume for contradiction that f(m) = m2 now for some odd m 6= 0. Evidently

m2f(4k −m2) = f(m3).

If f(m3) 6= 0 this forces f(4k −m2) 6= 0, and hence m2(4k −m2)2 = m6 for arbitrary
k 6= 0, which is clearly absurd. That means

f(4k −m2) = f(m2 − 4k) = f(m3) = 0

for each k 6= 0. Since m is odd, m2 ≡ 1 (mod 4), and so f(n) = 0 for all n other than
±m2 (since we cannot select k = 0).

Now f(m) = m2 means that m = ±1. Hence either f(x) ≡ 0 or

f(x) =

{
1 x = ±1

0 otherwise.

To show that the latter fails, we simply take x = 5 and y = 1 in the given.
Hence, the only solutions are f(x) ≡ 0 and f(x) ≡ x2.

5

http://web.evanchen.cc


USAMO 2014 Solution Notes web.evanchen.cc, updated 24 December 2023

§1.3 USAMO 2014/3, proposed by Sam Vandervelde
Available online at https://aops.com/community/p3477763.

Problem statement

Prove that there exists an infinite set of points

. . . , P−3, P−2, P−1, P0, P1, P2, P3, . . .

in the plane with the following property: For any three distinct integers a, b, and c,
points Pa, Pb, and Pc are collinear if and only if a+ b+ c = 2014.

The construction

Pn =

(
n− 2014

3
,

(
n− 2014

3

)3
)

works fine, and follows from the following claim:

Claim — If x, y, z are distinct real numbers then the points (x, x3), (y, y3), (z, z3)
are collinear if and only if x+ y + z = 0.

Proof. Note that by the “shoelace formula”, the collinearity is equivalent to

0 = det

x x3 1
y y3 1
z z3 1


But the determinant equals∑

cyc
x(y3 − z3) = (x− y)(y − z)(z − x)(x+ y + z).
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§2 Solutions to Day 2
§2.1 USAMO 2014/4, proposed by Palmer Mebane
Available online at https://aops.com/community/p3478584.

Problem statement

Let k be a positive integer. Two players A and B play a game on an infinite grid of
regular hexagons. Initially all the grid cells are empty. Then the players alternately
take turns with A moving first. In her move, A may choose two adjacent hexagons
in the grid which are empty and place a counter in both of them. In his move, B
may choose any counter on the board and remove it. If at any time there are k
consecutive grid cells in a line all of which contain a counter, A wins. Find the
minimum value of k for which A cannot win in a finite number of moves, or prove
that no such minimum value exists.

The answer is k = 6.

¶ Proof that A cannot win if k = 6. We give a strategy for B to prevent A’s victory.
Shade in every third cell, as shown in the figure below. Then A can never cover two
shaded cells simultaneously on her turn. Now suppose B always removes a counter on a
shaded cell (and otherwise does whatever he wants). Then he can prevent A from ever
getting six consecutive counters, because any six consecutive cells contain two shaded
cells.

¶ Example of a strategy for A when k = 5. We describe a winning strategy for A
explicitly. Note that after B’s first turn there is one counter, so then A may create an
equilateral triangle, and hence after B’s second turn there are two consecutive counters.
Then, on her third turn, A places a pair of counters two spaces away on the same line.
Label the two inner cells x and y as shown below.

x y
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Now it is B’s turn to move; in order to avoid losing immediately, he must remove either
x or y. Then on any subsequent turn, A can replace x or y (whichever was removed) and
add one more adjacent counter. This continues until either x or y has all its neighbors
filled (we ask A to do so in such a way that she avoids filling in the two central cells
between x and y as long as possible).

So, let’s say without loss of generality (by symmetry) that x is completely surrounded
by tokens. Again, B must choose to remove x (or A wins on her next turn). After x is
removed by B, consider the following figure.

x y

We let A play in the two marked green cells. Then, regardless of what move B plays,
one of the two choices of moves marked in red lets A win. Thus, we have described a
winning strategy when k = 5 for A.
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§2.2 USAMO 2014/5, proposed by Titu Andreescu, Cosmin Pohoata
Available online at https://aops.com/community/p3478581.

Problem statement

Let ABC be a triangle with orthocenter H and let P be the second intersection of
the circumcircle of triangle AHC with the internal bisector of ∠BAC. Let X be the
circumcenter of triangle APB and let Y be the orthocenter of triangle APC. Prove
that the length of segment XY is equal to the circumradius of triangle ABC.

A

B C

Q

P

X

Y

X ′

Y ′

H

B′

O

We eliminate the floating orthocenter by reflecting P across AC to Q. Then Q lies
on (ABC) and moreover ∠QAC = 1

2∠BAC. This motivates us to reflect B, X, Y to B′,
X ′, Y ′ and complex bash with respect to 4AQC. Obviously

y′ = a+ q + c.

Now we need to compute x′. You can get this using the formula

x′ = a+
(b′ − a)(q − a)

(
q − a− b′ − a

)
(b′ − a)(q − a)− (b′ − a)(q − a)

.

Using the angle condition we know b = c3

q2
, and then that

b′ = a+ c− acb = a+ c− aq2

c2
.

Therefore

x′ = a+

(
c− aq2

c2

)
(q − a)

(
1
q −

1
a − 1

c +
c2

aq2

)
(
c− aq2

c2

)(
1
q −

1
a

)
−
(
1
c −

c2

aq2

)
(q − a)

= a+

c3−aq2

c2
(q − a)

(
1
q −

1
a − 1

c +
c2

aq2

)
− c3−aq2

c2
q−a
qa + c3−aq2

aq2c
(q − a)
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= a+

1
q −

1
a − 1

c +
c2

aq2

− 1
qa + c

aq2

= a+
c2 − q2 + aq − aq2

c

c− q

= a+ c+ q +
aq

c

whence ∣∣x′ − y′
∣∣ = ∣∣∣aq

c

∣∣∣ = 1.

10

http://web.evanchen.cc


USAMO 2014 Solution Notes web.evanchen.cc, updated 24 December 2023

§2.3 USAMO 2014/6, proposed by Gabriel Dospinescu
Available online at https://aops.com/community/p3478578.

Problem statement

Prove that there is a constant c > 0 with the following property: If a, b, n are
positive integers such that gcd(a+ i, b+ j) > 1 for all i, j ∈ {0, 1, . . . , n}, then

min{a, b} > (cn)n/2.

Let N = n+ 1 and assume N is (very) large. We construct an N ×N with cells (i, j)
where 0 ≤ i, j ≤ n and in each cell place a prime p dividing gcd(a+ i, b+ j).

The central claim is at least 50% of the primes in this table exceed 0.001n2. We count
the maximum number of squares they could occupy:

∑
p

⌈
N

p

⌉2
≤
∑
p

(
N

p
+ 1

)2

= N2
∑
p

1

p2
+ 2N

∑
p

1

p
+
∑
p

1.

Here the summation runs over primes p ≤ 0.001n2.
Let r = π(0.001n2) denote the number of such primes. Now we consider the following

three estimates. First, ∑
p

1

p2
<

1

2

which follows by adding all the primes directly with some computation. Moreover,

∑
p

1

p
<

r∑
k=1

1

k
= O(log r) < o(N)

using the harmonic series bound, and∑
p

1 < r ∼ O

(
N2

lnN

)
< o(N2)

via Prime Number Theorem. Hence the sum in question is certainly less than 1
2N

2 for N
large enough, establishing the central claim.

Hence some column a + i has at least one half of its primes greater than 0.001n2.
Because this is greater than n for large n, these primes must all be distinct, so a + i
exceeds their product, which is larger than(

0.001n2
)N/2

> cn · nn

where c is some constant (better than the requested bound).
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