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15 April 2024

This is a compilation of solutions for the 2013 USAMO. The ideas of the
solution are a mix of my own work, the solutions provided by the competition
organizers, and solutions found by the community. However, all the writing
is maintained by me.

These notes will tend to be a bit more advanced and terse than the “official”
solutions from the organizers. In particular, if a theorem or technique is not
known to beginners but is still considered “standard”, then I often prefer to
use this theory anyways, rather than try to work around or conceal it. For
example, in geometry problems I typically use directed angles without further
comment, rather than awkwardly work around configuration issues. Similarly,
sentences like “let R denote the set of real numbers” are typically omitted
entirely.

Corrections and comments are welcome!
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§0 Problems
1. In triangle ABC, points P , Q, R lie on sides BC, CA, AB, respectively. Let ωA,

ωB , ωC denote the circumcircles of triangles AQR, BRP , CPQ, respectively. Given
the fact that segment AP intersects ωA, ωB, ωC again at X, Y , Z respectively,
prove that Y X/XZ = BP/PC.

2. For a positive integer n ≥ 3 plot n equally spaced points around a circle. Label
one of them A, and place a marker at A. One may move the marker forward in a
clockwise direction to either the next point or the point after that. Hence there
are a total of 2n distinct moves available; two from each point. Let an count the
number of ways to advance around the circle exactly twice, beginning and ending
at A, without repeating a move. Prove that an−1 + an = 2n for all n ≥ 4.

3. Let n be a positive integer. There are n(n+1)
2 tokens, each with a black side and a

white side, arranged into an equilateral triangle, with the biggest row containing
n tokens. Initially, each token has the white side up. An operation is to choose
a line parallel to the sides of the triangle, and flip all the token on that line. A
configuration is called admissible if it can be obtained from the initial configuration
by performing a finite number of operations. For each admissible configuration C,
let f(C) denote the smallest number of operations required to obtain C from the
initial configuration. Find the maximum value of f(C), where C varies over all
admissible configurations.

4. Find all real numbers x, y, z ≥ 1 satisfying

min
(√

x+ xyz,
√
y + xyz,

√
z + xyz

)
=
√
x− 1 +

√
y − 1 +

√
z − 1.

5. Let m and n be positive integers. Prove that there exists a positive integer c such
that cm and cn have the same nonzero decimal digits.

6. Let ABC be a triangle. Find all points P on segment BC satisfying the following
property: If X and Y are the intersections of line PA with the common external
tangent lines of the circumcircles of triangles PAB and PAC, then(

PA

XY

)2

+
PB · PC

AB ·AC
= 1.
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§1 Solutions to Day 1
§1.1 USAMO 2013/1, proposed by Zuming Feng
Available online at https://aops.com/community/p3041822.

Problem statement

In triangle ABC, points P , Q, R lie on sides BC, CA, AB, respectively. Let ωA,
ωB, ωC denote the circumcircles of triangles AQR, BRP , CPQ, respectively. Given
the fact that segment AP intersects ωA, ωB , ωC again at X, Y , Z respectively, prove
that Y X/XZ = BP/PC.

Let M be the concurrence point of ωA, ωB, ωC (by Miquel’s theorem).

A

B CP

Q

R

M
X

Y

Z

Then M is the center of a spiral similarity sending Y Z to BC. So it suffices to show
that this spiral similarity also sends X to P , but

]MXY = ]MXA = ]MRA = ]MRB = ]MPB

so this follows.
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§1.2 USAMO 2013/2, proposed by Kiran Kedlaya
Available online at https://aops.com/community/p3041823.

Problem statement

For a positive integer n ≥ 3 plot n equally spaced points around a circle. Label
one of them A, and place a marker at A. One may move the marker forward in a
clockwise direction to either the next point or the point after that. Hence there
are a total of 2n distinct moves available; two from each point. Let an count the
number of ways to advance around the circle exactly twice, beginning and ending at
A, without repeating a move. Prove that an−1 + an = 2n for all n ≥ 4.

We present two similar approaches.

¶ First solution. Imagine the counter is moving along the set S = {0, 1, . . . , 2n} instead,
starting at 0 and ending at 2n, in jumps of length 1 and 2. We can then record the
sequence of moves as a matrix of the form[

p0 p1 p2 . . . pn−1 pn
pn pn+1 pn+2 . . . p2n−1 p2n

]
where pi = 1 if the point i was visited by the counter, and pi = 0 if the point was not
visited by the counter. Note that p0 = p2n = 1 and the upper-right and lower-left entries
are equal. Then, the problem amounts to finding the number of such matrices which
avoid the contiguous submatrices

[
0 0

] [
0
0

] [
1 1
1 1

]
which correspond to forbidding jumps of length greater than 2, repeating a length 2 jump
and repeating a length 1 jump.

We give a nice symmetric phrasing suggested by fclvbfm934 at https://aops.com/
community/p27834267. If we focus on just the three possible column vectors that appear,
say

u :=

[
1
0

]
, v :=

[
0
1

]
, w :=

[
1
1

]
then we can instead describe valid matrices as sequences of n+ 1 such column vectors,
where no two column vectors are adjacent, and where the boundary condition is that

• either we start with u and end with v, or

• either we start with w and end with w.

Let xn and yn denote the number of such 2× (n+ 1) matrices. (Hence an = xn + yn.)
But owing to the symmetry of the setup with u, v, w, we could instead view xn and yn
as the number of 2× (n+1) matrices for a fixed starting first column whose final column
is the same/different. So we have the recursions

xn+1 = xn + yn

yn+1 = 2xn.
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We also have that
2xn + yn = 2n

which may either be proved directly from the recursions (using x1 = 1 and y1 = 0), or by
noting the left-hand side counts the total number of sequences of n+ 1 column vectors
with no restrictions on the final column at all (in which case there are simply 2 choices
for each of the n columns after the first one). Thus,

an+1 + an = (xn+1 + yn+1) + (xn + yn)

= ((xn + yn) + 2xn) + (xn + yn)

= 2(2xn + yn) = 2n+1

as needed.

¶ Second (longer) solution. If one does not notice the nice rephrasing with u, v, w
above, one may still proceed with the following direct calculation. Retain the notation of[

p0 p1 p2 . . . pn−1 pn
pn pn+1 pn+2 . . . p2n−1 p2n

]
described earlier. We will for now ignore the boundary conditions. Instead we say a
2 ×m matrix is silver (m ≥ 2) if it avoids the three shapes above. We consider three
types of silver matrices (essentially doing casework on the last column):

• type B matrices, of the shape
[
1 · · · 1
0 · · · 0

]

• type C matrices, of the shape
[
1 · · · 0
0 · · · 1

]
.

• type D matrices, of the shape
[
1 · · · 1
0 · · · 1

]
.

We let bm, cm, dm denote matrices of each type, of size 2×m, and claim the following
two recursions for m ≥ 4:

bm = cm−1 + dm−1

cm = bm−1 + dm−1

dm = bm−1 + cm−1.

Indeed, if we delete the last column of a type B matrix and consider what used to be the
second-to-last column, we find that it is either type C or type D. This establishes the
first recursion and the others are analogous.

Note that b2 = 0 and c2 = d2 = 1. So using this recursion, the first few values are

m 2 3 4 5 6 7 8

bm 0 2 2 6 10 22 42
cm 1 1 3 5 11 21 43
dm 1 1 3 5 11 21 43

and a calculation gives bm = 2m−1+2(−1)m−1

3 , cm = dm = 2m−1−(−1)m−1

3 .
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We now relate an to bm, cm, dm. Observe that a matrix as described in the problem is
a silver matrix of one of two forms:[

1 p1 p2 . . . pn−1 0
0 pn+1 pn+2 . . . p2n−1 1

]
or

[
1 p1 p2 . . . pn−1 1
1 pn+1 pn+2 . . . p2n−1 1

]
.

There are cn+1 matrices of the first form. Moreover, there are 2dn matrices of the second
form (to see this, delete the first column; we either get a type-D matrix or an upside-down
type-D matrix). Thus we get

an = cn+1 + 2dn =
2n+1 + (−1)n+1

3
.

This implies the result.

Remark. The two solutions are closely related. In fact, cn = xn−1 and bn = yn−1. So the
second solution is really the same as the first solution, except the symmetry of u, v, w was
not noticed, thus requiring a third recursion to handle all the cases manually.
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§1.3 USAMO 2013/3, proposed by Warut Suksompong
Available online at https://aops.com/community/p3041827.

Problem statement

Let n be a positive integer. There are n(n+1)
2 tokens, each with a black side and a

white side, arranged into an equilateral triangle, with the biggest row containing
n tokens. Initially, each token has the white side up. An operation is to choose
a line parallel to the sides of the triangle, and flip all the token on that line. A
configuration is called admissible if it can be obtained from the initial configuration
by performing a finite number of operations. For each admissible configuration C,
let f(C) denote the smallest number of operations required to obtain C from the
initial configuration. Find the maximum value of f(C), where C varies over all
admissible configurations.

The answer is

max
C

f(C) =


6k n = 4k

6k + 1 n = 4k + 1

6k + 2 n = 4k + 2

6k + 3 n = 4k + 3.

The main point of the problem is actually to determine all linear dependencies among
the 3n possible moves (since the moves commute and applying a move twice is the same
as doing nothing). In what follows, assume n > 1 for convenience.

To this end, we consider sequences of operations as additive vectors in v ∈ F3n
2 , with

the linear map T : F3n
2 → F

1
2
n(n+1)

2 denoting the result of applying a vector v. We in
particular focus on the following four vectors.

• Three vectors x, y, z are defined by choosing all n lines parallel to one axis. Note
T (x) = T (y) = T (z) = 1 (i.e. these vectors flip all tokens).

• The vector θ which toggles all lines with an even number of tokens. One can check
that T (θ) = 0. (Easiest to guess from n = 2 and n = 3 case.) One amusing proof
that this works is to use Vivani’s theorem: in an equilateral triangle ABC, the sum
of distances from an interior point P to the three sides is equal.

The main claim is:

Claim — For n ≥ 2, the kernel of T has exactly eight elements, namely {0, x +
y, y + z, z + x, θ, θ + x+ y, θ + y + z, θ + z + x}.

Proof. Suppose T (v) = 0.

• If v uses the y-move of length n, then we replace v with v + (x + y) to obtain a
vector in the kernel not using the y-move of length n.

• If v uses the z-move of length n, then we replace v with v + (x + z) to obtain a
vector in the kernel not using the z-move of length n.

• If v uses the x-move of length 2, then
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– if n is odd, replace v with v + θ;
– if n is even, replace v with v + (θ + y + z)

to obtain a vector in the kernel not using the x-move of length 2.

A picture is shown below, with the unused rows being dotted.

Then, it is easy to check inductively that v must now be the zero vector, after the
replacements. The idea is that for each token t, if two of the moves involving t are unused,
so is the third, and in this way we can show all rows are unused. Thus the original v was
in the kernel we described.

(An alternative proof by induction is feasible too; as a sequence of movings which does
not affect the top n rows also does not affect the to n− 1 rows.)

Then problem is a coordinate bash, since given any v we now know exactly which vectors
w have T (v) = T (w), so given any admissible configuration C one can exactly compute
f(C) as the minimum of eight values.

To be explicit, we could represent a vector v as

v ←→ (a1, a2, b1, b2, c1, c2)

where a1 is the number of 1’s in odd x-indices, a2 number of 1’s in even x-indices. Then
for example

v ←→ (a1, a2, b1, b2, c1, c2)

v + x+ y ←→
(⌈n

2

⌉
− a1,

⌊n
2

⌋
− a2,

⌈n
2

⌉
− b1,

⌊n
2

⌋
− b2, c1, c2

)
v + θ ←→

(
a1,
⌊n
2

⌋
− a2, b1,

⌊n
2

⌋
− b2, c1,

⌊n
2

⌋
− c2

) ...

and f(T (v)) is the smallest sum of the six numbers across all eight 6-tuples. So you
expect to answer about 3

2n if all things are about n/4. The details are too annoying to
reproduce here, so they are omitted.
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§2 Solutions to Day 2
§2.1 USAMO 2013/4, proposed by Titu Andreescu
Available online at https://aops.com/community/p3043752.

Problem statement

Find all real numbers x, y, z ≥ 1 satisfying

min
(√

x+ xyz,
√
y + xyz,

√
z + xyz

)
=
√
x− 1 +

√
y − 1 +

√
z − 1.

Set x = 1 + a, y = 1 + b, z = 1 + c which eliminates the x, y, z ≥ 1 condition. Assume
without loss of generality that a ≤ b ≤ c. Then the given equation rewrites as√

(1 + a) (1 + (1 + b)(1 + c)) =
√
a+
√
b+
√
c.

In fact, we are going to prove the left-hand side always exceeds the right-hand side,
and then determine the equality cases. We have:

(1 + a) (1 + (1 + b)(1 + c)) = (a+ 1) (1 + (b+ 1)(1 + c))

≤ (a+ 1)

(
1 +

(√
b+
√
c
)2)

≤
(√

a+
(√

b+
√
c
))2

by two applications of Cauchy-Schwarz.
Equality holds if bc = 1 and 1/a =

√
b +
√
c. Letting c = t2 for t ≥ 1, we recover

b = t−2 ≤ t2 and a = 1
t+1/t ≤ t2.

Hence the solution set is

(x, y, z) =

(
1 +

(
t

t2 + 1

)2

, 1 +
1

t2
, 1 + t2

)

and permutations, for any t > 0.
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§2.2 USAMO 2013/5, proposed by Richard Stong
Available online at https://aops.com/community/p3043754.

Problem statement

Let m and n be positive integers. Prove that there exists a positive integer c such
that cm and cn have the same nonzero decimal digits.

One-line spoiler: 142857.
More verbosely, the idea is to look at the decimal representation of 1/D, m/D, n/D

for a suitable denominator D, which have a “cyclic shift” property in which the digits of
n/D are the digits of m/D shifted by 3.

Remark (An example to follow along). Here is an example to follow along in the subsequent
proof If m = 4 and n = 23 then the magic numbers e = 3 and D = 41 obey

103 · 4
41

= 97 +
23

41
.

The idea is that

1

41
= 0.02439

4

41
= 0.09756

23

41
= 0.56097

and so c = 2349 works; we get 4c = 9756 and 23c = 56097 which are cyclic shifts of each
other by 3 places (with some leading zeros appended).

Here is the one to use:

Claim — There exists positive integers D and e such that gcd(D, 10) = 1, D >
max(m,n), and moreover

10em− n

D
∈ Z.

Proof. Suppose we pick some exponent e and define the number

A = 10en−m.

Let r = ν2(m) and s = ν5(m). As long as e > max(r, s) we have ν2(A) = r and ν5(A) = s,
too. Now choose any e > max(r, s) big enough that A > 2r5s max(m,n) also holds. Then
the number D = A

2r5s works; the first two properties hold by construction and

10e · n
D
− m

D
=

A

D
= 2r5s

is an integer.

Remark (For people who like obscure theorems). Kobayashi’s theorem implies we can
actually pick D to be prime.
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Now we take c to be the number under the bar of 1/D (leading zeros removed). Then
the decimal representation of m

D is the decimal representation of cm repeated (possibly
including leading zeros). Similarly, n

D has the decimal representation of cm repeated
(possibly including leading zeros). Finally, since

10e · m
D
− n

D
is an integer

it follows that these repeating decimal representations are rotations of each other by e
places, so in particular they have the same number of nonzero digits.

Remark. Many students tried to find a D satisfying the stronger hypothesis that 1/D,
2/D, . . . , (D − 1)/D are cyclic shifts of each other. For example, this holds in the famous
D = 7 case.

The official USAMO 2013 solutions try to do this by proving that 10 is a primitive
root modulo 7e for each e ≥ 1, by Hensel lifting lemma. I think this argument is actually
incorrect, because it breaks if either m or n are divisible by 7. Put bluntly, 7

49 and 8
49 are

not shifts of each other.
One may be tempted to resort to using large primes D rather than powers of 7 to deal

with this issue. However it is an open conjecture (a special case of Artin’s primitive root
conjecture) whether or not 10 (mod p) is primitive infinitely often, which is the necessary
conjecture so this is harder than it seems.
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§2.3 USAMO 2013/6, proposed by Titu Andreescu, Cosmin Pohoata
Available online at https://aops.com/community/p3043749.

Problem statement

Let ABC be a triangle. Find all points P on segment BC satisfying the following
property: If X and Y are the intersections of line PA with the common external
tangent lines of the circumcircles of triangles PAB and PAC, then(

PA

XY

)2

+
PB · PC

AB ·AC
= 1.

Let O1 and O2 denote the circumcenters of PAB and PAC. The main idea is to notice
that 4ABC and 4AO1O2 are spirally similar.

A

B C
P

O1

O2

X1

Y1

X2

Y2

X

Y

Claim (Salmon theorem) — We have 4ABC
+∼ 4AO1O2.

Proof. We first claim 4AO1B
+∼ 4AO2C. Assume without loss of generality that

∠APB ≤ 90◦. Then
∠AO1B = 2∠APB

but
∠AO2C = 2 (180− ∠APC) = 2∠ABP.

Hence ∠AO1B = ∠AO2C. Moreover, both triangles are isosceles, establishing the first
similarity. The second part follows from spiral similarities coming in pairs.

Claim — We always have (
PA

XY

)2

= 1−
(

a

b+ c

)2

.
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(In particular, this does not depend on P .)

Proof. We now delete the points B and C and remember only the fact that 4AO1O2

has angles A, B, C. The rest is a computation and several approaches are possible.
Without loss of generality A is closer to X than Y , and let the common tangents

be X1X2 and Y1Y2. We’ll perform the main calculation with the convenient scaling
OBOC = a, AOC = b, and AOB = c. Let B1 and C1 be the tangency points of X, and
let h = AM be the height of 4AOBOC .

O1 O2

A

P

M

X1

X2

X

Note that by Power of a Point, we have XX2
1 = XX2

2 = XM2 − h2. Also, by
Pythagorean theorem we easily obtain X1X2 = a2 − (b− c)2. So putting these together
gives

XM2 − h2 =
a2 − (b− c)2

4
=

(a+ b− c)(a− b+ c)

4
= (s− b)(s− c).

Therefore, we have
Then

XM2

h2
= 1 +

(s− b)(s− c)

h2
= 1 +

a2(s− b)(s− c)

a2h2

= 1 +
a2(s− b)(s− c)

4s(s− a)(s− b)(s− c)
= 1 +

a2

4s(s− a)

= 1 +
a2

(b+ c)2 − a2
=

(b+ c)2

(b+ c)2 − a2
.

Thus (
PA

XY

)2

=

(
h

XM

)2

= 1−
(

a

b+ c

)2

.

To finish, note that when P is the foot of the ∠A-bisector, we necessarily have

PB · PC

AB ·AC
=

(
b

b+ca
)(

c
b+ca

)
bc

=

(
a

b+ c

)2

.

Since there are clearly at most two solutions as PA
XY is fixed, these are the only two

solutions.
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