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This is a compilation of solutions for the 2012 USAMO. The ideas of the
solution are a mix of my own work, the solutions provided by the competition
organizers, and solutions found by the community. However, all the writing
is maintained by me.

These notes will tend to be a bit more advanced and terse than the “official”
solutions from the organizers. In particular, if a theorem or technique is not
known to beginners but is still considered “standard”, then I often prefer to
use this theory anyways, rather than try to work around or conceal it. For
example, in geometry problems I typically use directed angles without further
comment, rather than awkwardly work around configuration issues. Similarly,
sentences like “let R denote the set of real numbers” are typically omitted
entirely.

Corrections and comments are welcome!
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§0 Problems
1. Find all integers n ≥ 3 such that among any n positive real numbers a1, a2, . . . ,

an with
max(a1, a2, . . . , an) ≤ n · min(a1, a2, . . . , an),

there exist three that are the side lengths of an acute triangle.

2. A circle is divided into congruent arcs by 432 points. The points are colored in
four colors such that some 108 points are colored red, some 108 points are colored
green, some 108 points are colored blue, and the remaining 108 points are colored
yellow. Prove that one can choose three points of each color in such a way that the
four triangles formed by the chosen points of the same color are congruent.

3. Determine which integers n > 1 have the property that there exists an infinite
sequence a1, a2, a3, . . .of nonzero integers such that the equality

ak + 2a2k + · · ·+ nank = 0

holds for every positive integer k.

4. Find all functions f : N → N such that f(n!) = f(n)! for all positive integers n and
such that m− n divides f(m)− f(n) for all distinct positive integers m, n.

5. Let P be a point in the plane of 4ABC, and γ a line through P . Let A′, B′, C ′ be
the points where the reflections of lines PA, PB, PC with respect to γ intersect
lines BC, CA, AB respectively. Prove that A′, B′, C ′ are collinear.

6. For integer n ≥ 2, let x1, x2, . . . , xn be real numbers satisfying

x1 + x2 + · · ·+ xn = 0 and x21 + x22 + · · ·+ x2n = 1.

For each subset A ⊆ {1, 2, . . . , n}, define SA =
∑

i∈A xi. (If A is the empty set,
then SA = 0.) Prove that for any positive number λ, the number of sets A satisfying
SA ≥ λ is at most 2n−3/λ2. For which choices of x1, x2, . . . , xn, λ does equality
hold?
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§1 Solutions to Day 1
§1.1 USAMO 2012/1, proposed by Titu Andreescu
Available online at https://aops.com/community/p2669112.

Problem statement

Find all integers n ≥ 3 such that among any n positive real numbers a1, a2, . . . , an
with

max(a1, a2, . . . , an) ≤ n · min(a1, a2, . . . , an),

there exist three that are the side lengths of an acute triangle.

The answer is all n ≥ 13.
Define (Fn) as the sequence of Fibonacci numbers, by F1 = F2 = 1 and Fn+1 =

Fn + Fn−1. We will find that Fibonacci numbers show up naturally when we work
through the main proof, so we will isolate the following calculation now to make the
subsequent solution easier to read.

Claim — For positive integers m, we have Fm ≤ m2 if and only if m ≤ 12.

Proof. A table of the first 14 Fibonacci numbers is given below.

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14

1 1 2 3 5 8 13 21 34 55 89 144 233 377

By examining the table, we see that Fm ≤ m2 is true for m = 1, 2, . . . 12, and in fact
F12 = 122 = 144. However, Fm > m2 for m = 13 and m = 14.

Now it remains to prove that Fm > m2 for m ≥ 15. The proof is by induction with
base cases m = 13 and m = 14 being checked already. For the inductive step, if m ≥ 15
then we have

Fm = Fm−1 + Fm−2 > (m− 1)2 + (m− 2)2

= 2m2 − 6m+ 5 = m2 + (m− 1)(m− 5) > m2

as desired.

We now proceed to the main problem. The hypothesis max(a1, a2, . . . , an) ≤ n ·
min(a1, a2, . . . , an) will be denoted by (†).

Proof that all n ≥ 13 have the property. We first show now that every n ≥ 13
has the desired property. Suppose for contradiction that no three numbers are the sides
of an acute triangle. Assume without loss of generality (by sorting the numbers) that
a1 ≤ a2 ≤ · · · ≤ an. Then since ai−1, ai, ai+1 are not the sides of an acute triangle for
each i ≥ 2, we have that a2i+1 ≥ a2i + a2i−1; writing this out gives

a23 ≥ a22 + a21 ≥ 2a21

a24 ≥ a23 + a22 ≥ 2a21 + a21 = 3a21

a25 ≥ a24 + a23 ≥ 3a21 + 2a21 = 5a21

a26 ≥ a25 + a24 ≥ 5a21 + 3a21 = 8a21
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and so on. The Fibonacci numbers appear naturally and by induction, we conclude that
a2i ≥ Fia

2
1. In particular, a2n ≥ Fna

2
1.

However, we know max(a1, . . . , an) = an and min(a1, . . . , an) = a1, so (†) reads
an ≤ n · a1. Therefore we have Fn ≤ n2, and so n ≤ 12, contradiction!

Proof that no n ≤ 12 have the property. Assume that n ≤ 12. The above
calculation also suggests a way to pick the counterexample: we choose ai =

√
Fi for every

i. Then min(a1, . . . , an) = a1 = 1 and max(a1, . . . , an) =
√
Fn, so (†) is true as long as

n ≤ 12. And indeed no three numbers form the sides of an acute triangle: if i < j < k,
then a2k = Fk = Fk−1 + Fk−2 ≥ Fj + Fi = a2j + a2i .

4

http://web.evanchen.cc


USAMO 2012 Solution Notes web.evanchen.cc, updated 15 April 2024

§1.2 USAMO 2012/2, proposed by Gregory Galperin
Available online at https://aops.com/community/p2669115.

Problem statement

A circle is divided into congruent arcs by 432 points. The points are colored in four
colors such that some 108 points are colored red, some 108 points are colored green,
some 108 points are colored blue, and the remaining 108 points are colored yellow.
Prove that one can choose three points of each color in such a way that the four
triangles formed by the chosen points of the same color are congruent.

First, consider the 431 possible non-identity rotations of the red points, and count overlaps
with green points. If we select a rotation randomly, then each red point lies over a green
point with probability 108

431 ; hence the expected number of red-green incidences is

108

431
· 108 > 27

and so by pigeonhole, we can find a red 28-gon and a green 28-gon which are rotations of
each other.

Now, look at the 430 rotations of this 28-gon (that do not give the all-red or all-green
configuration) and compare it with the blue points. The same approach gives

108

430
· 28 > 7

incidences, so we can find red, green, blue 8-gons which are similar under rotation.
Finally, the 429 nontrivial rotations of this 8-gon expect

108

429
· 8 > 2

incidences with yellow. So finally we have four monochromatic 3-gons, one of each color,
which are rotations of each other.
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§1.3 USAMO 2012/3, proposed by Gabriel Carroll
Available online at https://aops.com/community/p2669119.

Problem statement

Determine which integers n > 1 have the property that there exists an infinite
sequence a1, a2, a3, . . .of nonzero integers such that the equality

ak + 2a2k + · · ·+ nank = 0

holds for every positive integer k.

Answer: all n > 2.
For n = 2, we have ak + 2a2k = 0, which is clearly not possible, since it implies

a2k = a1
2k−1 for all k ≥ 1.

For n ≥ 3 we will construct a completely multiplicative sequence (meaning aij = aiaj
for all i and j). Thus (ai) is determined by its value on primes, and satisfies the condition
as long as a1+2a2+ · · ·+nan = 0. The idea is to take two large primes and use Bezout’s
theorem, but the details require significant care.

We start by solving the case where n ≥ 9. In that case, by Bertrand postulate there
exists primes p and q such that

dn/2e < q < 2 dn/2e and 1

2
(q − 1) < p < q − 1.

Clearly p 6= q, and q ≥ 7, so p > 3. Also, p < q < n but 2q > n, and 4p ≥ 4
(
1
2(q + 1)

)
>

n. We now stipulate that ar = 1 for any prime r 6= p, q (in particular including r = 2
and r = 3). There are now three cases, identical in substance.

• If p, 2p, 3p ∈ [1, n] then we would like to choose nonzero ap and aq such that

6p · ap + q · aq = 6p+ q − 1

2
n(n+ 1)

which is possible by Bézout lemma, since gcd(6p, q) = 1.

• Else if p, 2p ∈ [1, n] then we would like to choose nonzero ap and aq such that

3p · ap + q · aq = 3p+ q − 1

2
n(n+ 1)

which is possible by Bézout lemma, since gcd(3p, q) = 1.

• Else if p ∈ [1, n] then we would like to choose nonzero ap and aq such that

p · ap + q · aq = p+ q − 1

2
n(n+ 1)

which is possible by Bézout lemma, since gcd(p, q) = 1. (This case is actually
possible in a few edge cases, for example when n = 9, q = 7, p = 5.)

It remains to resolve the cases where 3 ≤ n ≤ 8. We enumerate these cases manually:

• For n = 3, let an = (−1)ν3(n).
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• For n = 4, let an = (−1)ν2(n)+ν3(n).

• For n = 5, let an = (−2)ν5(n).

• For n = 6, let an = 5ν2(n) · 3ν3(n) · (−42)ν5(n).

• For n = 7, let an = (−3)ν7(n).

• For n = 8, we can choose (p, q) = (5, 7) in the prior construction.

This completes the constructions for all n > 2.
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§2 Solutions to Day 2
§2.1 USAMO 2012/4, proposed by Gabriel Dospinescu
Available online at https://aops.com/community/p2669997.

Problem statement

Find all functions f : N → N such that f(n!) = f(n)! for all positive integers n and
such that m− n divides f(m)− f(n) for all distinct positive integers m, n.

Answer: f ≡ 1, f ≡ 2, and f the identity. As these obviously work, we prove these are
the only ones.

By putting n = 1 and n = 2 we give f(1), f(2) ∈ {1, 2}. Also, we will use the condition

m!− n! divides f(m)!− f(n)!.

We consider four cases on f(1) and f(2), and dispense with three of them.

• If f(2) = 1 then for all m ≥ 3 we have m!− 2 divides f(m)!− 1, so f(m) = 1 for
modulo 2 reasons. Then clearly f(1) = 1.

• If f(1) = f(2) = 2 we first obtain 3!− 1 | f(3)!− 2, which implies f(3) = 2. Then
m!− 3 | f(m)!− 2 for m ≥ 4 implies f(m) = 2 for modulo 3 reasons.

Hence we are left with the case where f(1) = 1 and f(2) = 2. Continuing, we have

3!− 1 | f(3)!− 1 and 3!− 2 | f(3)!− 2 =⇒ f(3) = 3.

Continuing by induction, suppose f(1) = 1, . . . , f(k) = k.

k! · k = (k + 1)!− k! | f(k + 1)!− k!

and thus we deduce that f(k + 1) ≥ k, and hence

k | f(k + 1)!

k!
− 1.

Then plainly f(k + 1) ≤ 2k for mod k reasons, but also f(k + 1) ≡ 1 (mod k) so we
conclude f(k + 1) = k + 1.

Remark. Shankar Padmanabhan gives the following way to finish after verifying that
f(3) = 3. Note that if

M = ((((3!)!)!)! . . . )!

for any number of iterated factorials then f(M) = M . Thus for any n, we have

M − n | f(M)− f(n) = M − f(n) =⇒ M − n | n− f(n)

and so taking M large enough implies f(n) = n.
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§2.2 USAMO 2012/5, proposed by Titu Andreescu, Cosmin Pohoata
Available online at https://aops.com/community/p2669960.

Problem statement

Let P be a point in the plane of 4ABC, and γ a line through P . Let A′, B′, C ′ be
the points where the reflections of lines PA, PB, PC with respect to γ intersect
lines BC, CA, AB respectively. Prove that A′, B′, C ′ are collinear.

We present three solutions.

¶ First solution (complex numbers). Let p = 0 and set γ as the real line. Then A′ is
the intersection of bc and pa. So, we get

a′ =
a(bc− bc)

(b− c)a− (b− c)a
.

A

B C

P

A′

Note that
a′ =

a(bc− bc)

(b− c)a− (b− c)a
.

Thus it suffices to prove

0 = det


a(bc−bc)

(b−c)a−(b−c)a

a(bc−bc)

(b−c)a−(b−c)a
1

b(ca−ca)

(c−a)b−(c−a)b

b(ca−ca)

(c−a)b−(c−a)b
1

c(ab−ab)

(a−b)c−(a−b)c

c(ab−ab)

(a−b)c−(a−b)c
1

 .

This is equivalent to

0 = det

a(bc− bc) a(bc− bc) (b− c)a− (b− c)a

b(ca− ca) b(ca− ca) (c− a)b− (c− a)b

c(ab− ab) c(ab− ab) (a− b)c− (a− b)c

 .

This determinant has the property that the rows sum to zero, and we’re done.

Remark. Alternatively, if you don’t notice that you could just blindly expand:∑
cyc

((b− c)a− (b− c)a) · −det
[
b b
c c

]
(ca− ca)

(
ab− ab

)
= (bc− cb)(ca− ca)(ab− ab)

∑
cyc

(
ab− ac+ ca− ba

)
= 0.
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¶ Second solution (Desargues involution). We let C ′′ = A′B′∩AB. Consider complete
quadrilateral ABCA′B′C ′′C. We see that there is an involutive pairing τ at P swapping
(PA,PA′), (PB,PB′), (PC,PC ′′). From the first two, we see τ coincides with reflection
about `, hence conclude C ′′ = C.

¶ Third solution (barycentric), by Catherine Xu. We will perform barycentric co-
ordinates on the triangle PCC ′, with P = (1, 0, 0), C ′ = (0, 1, 0), and C = (0, 0, 1).
Set a = CC ′, b = CP , c = C ′P as usual. Since A, B, C ′ are collinear, we will define
A = (p : k : q) and B = (p : ` : q).

Claim — Line γ is the angle bisector of ∠APA′, ∠BPB′, and ∠CPC ′.

Proof. Since A′P is the reflection of AP across γ, etc.

Thus B′ is the intersection of the isogonal of B with respect to ∠P with the line CA;
that is,

B′ =

(
p

k

b2

`
:
b2

`
:
c2

q

)
.

Analogously, A′ is the intersection of the isogonal of A with respect to ∠P with the line
CB; that is,

A′ =

(
p

`

b2

k
:
b2

k
:
c2

q

)
.

The ratio of the first to third coordinate in these two points is both b2pq : c2k`, so it
follows A′, B′, and C ′ are collinear.

Remark (Problem reference). The converse of this problem appears as problem 1052
attributed S. V. Markelov in the book Geometriya: 9–11 Klassy: Ot Uchebnoy Zadachi k
Tvorcheskoy, 1996, by I. F. Sharygin.
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§2.3 USAMO 2012/6, proposed by Gabriel Carroll
Available online at https://aops.com/community/p2670037.

Problem statement

For integer n ≥ 2, let x1, x2, . . . , xn be real numbers satisfying

x1 + x2 + · · ·+ xn = 0 and x21 + x22 + · · ·+ x2n = 1.

For each subset A ⊆ {1, 2, . . . , n}, define SA =
∑

i∈A xi. (If A is the empty set, then
SA = 0.) Prove that for any positive number λ, the number of sets A satisfying
SA ≥ λ is at most 2n−3/λ2. For which choices of x1, x2, . . . , xn, λ does equality
hold?

Let εi be a coin flip of 0 or 1. Then we have

E[S2
A] = E

[(∑
εixi

)2
]
=

∑
i

E[ε2i ]x2i +
∑
i<j

E[εiεj ]2xixj

=
1

2

∑
x2i +

1

2

∑
xixj =

1

2
+

1

2

∑
i<j

xixj =
1

2
+

1

2

(
−1

2

)
=

1

4
.

In other words,
∑

A S2
A = 2n−2. Since can always pair A with its complement, we

conclude ∑
SA>0

S2
A = 2n−3.

Equality holds iff SA ∈ {±λ, 0} for every A. This occurs when x1 = 1/
√
2, x2 = −1/

√
2,

x3 = · · · = 0 (or permutations), and λ = 1/
√
2.
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