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This is a compilation of solutions for the 2011 USAMO. Some of the
solutions are my own work, but many are from the official solutions provided
by the organizers (for which they hold any copyrights), and others were found
by users on the Art of Problem Solving forums.

These notes will tend to be a bit more advanced and terse than the “official”
solutions from the organizers. In particular, if a theorem or technique is not
known to beginners but is still considered “standard”, then I often prefer to
use this theory anyways, rather than try to work around or conceal it. For
example, in geometry problems I typically use directed angles without further
comment, rather than awkwardly work around configuration issues. Similarly,
sentences like “let R denote the set of real numbers” are typically omitted
entirely.

Corrections and comments are welcome!
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§0 Problems
1. Let a, b, c be positive real numbers such that a2 + b2 + c2 + (a+ b+ c)2 ≤ 4. Prove

that
ab+ 1

(a+ b)2
+

bc+ 1

(b+ c)2
+

ca+ 1

(c+ a)2
≥ 3.

2. An integer is assigned to each vertex of a regular pentagon so that the sum of the
five integers is 2011. A turn of a solitaire game consists of subtracting an integer
m (not necessarily positive) from each of the integers at two neighboring vertices
and adding 2m to the opposite vertex, which is not adjacent to either of the first
two vertices. (The amount m and the vertices chosen can vary from turn to turn.)
The game is won at a certain vertex if, after some number of turns, that vertex has
the number 2011 and the other four vertices have the number 0. Prove that for
any choice of the initial integers, there is exactly one vertex at which the game can
be won.

3. In hexagon ABCDEF , which is nonconvex but not self-intersecting, no pair of
opposite sides are parallel. The internal angles satisfy ∠A = 3∠D, ∠C = 3∠F ,
and ∠E = 3∠B. Furthermore AB = DE, BC = EF , and CD = FA. Prove that
diagonals AD, BE, and CF are concurrent.

4. Consider the assertion that for each positive integer n ≥ 2, the remainder upon
dividing 22

n by 2n − 1 is a power of 4. Either prove the assertion or find (with
proof) a counterexample.

5. Let P be a point inside convex quadrilateral ABCD. Points Q1 and Q2 are located
within ABCD such that

∠Q1BC = ∠ABP, ∠Q1CB = ∠DCP,

∠Q2AD = ∠BAP, ∠Q2DA = ∠CDP.

Prove that Q1Q2 ‖ AB if and only if Q1Q2 ‖ CD.

6. Let A be a set with |A| = 225, meaning that A has 225 elements. Suppose further
that there are eleven subsets A1, . . . , A11 of A such that |Ai| = 45 for 1 ≤ i ≤ 11
and |Ai ∩Aj | = 9 for 1 ≤ i < j ≤ 11. Prove that |A1 ∪A2 ∪ · · · ∪A11| ≥ 165, and
give an example for which equality holds.
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§1 Solutions to Day 1
§1.1 USAMO 2011/1, proposed by Titu Andreescu
Available online at https://aops.com/community/p2254758.

Problem statement

Let a, b, c be positive real numbers such that a2 + b2 + c2 + (a+ b+ c)2 ≤ 4. Prove
that

ab+ 1

(a+ b)2
+

bc+ 1

(b+ c)2
+

ca+ 1

(c+ a)2
≥ 3.

The condition becomes 2 ≥ a2 + b2 + c2 + ab+ bc+ ca. Therefore,∑
cyc

2ab+ 2

(a+ b)2
≥
∑
cyc

2ab+ (a2 + b2 + c2 + ab+ bc+ ca)

(a+ b)2

=
∑
cyc

(a+ b)2 + (c+ a)(c+ b)

(a+ b)2

= 3 +
∑
cyc

(c+ a)(c+ b)

(a+ b)2

≥ 3 + 3 3

√√√√∏
cyc

(c+ a)(c+ b)

(a+ b)2
= 3 + 3 = 6

with the last line by AM-GM. This completes the proof.
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§1.2 USAMO 2011/2, proposed by Sam Vandervelde
Available online at https://aops.com/community/p2254765.

Problem statement

An integer is assigned to each vertex of a regular pentagon so that the sum of the
five integers is 2011. A turn of a solitaire game consists of subtracting an integer
m (not necessarily positive) from each of the integers at two neighboring vertices
and adding 2m to the opposite vertex, which is not adjacent to either of the first
two vertices. (The amount m and the vertices chosen can vary from turn to turn.)
The game is won at a certain vertex if, after some number of turns, that vertex has
the number 2011 and the other four vertices have the number 0. Prove that for any
choice of the initial integers, there is exactly one vertex at which the game can be
won.

Call the vertices 0, 1, 2, 3, 4 in order. First, notice that the quantity

S := N1 + 2N2 + 3N3 + 4N4 (mod 5)

is invariant, where Ni is the amount at vertex i. This immediately implies that at most
one vertex can win, since in a winning situation all Ni are 0 except for one, which is 2011.
(For example, if S ≡ 3 (mod 5), any victory must occur at the vertex 3, via N3 = 2011,
N0 = N1 = N2 = N4 = 0.)

Now we prove we can win on this unique vertex. Let ai, xi denote the number initially
at i and xi denote

∑
m over all m where vertex i gains 2m. WLOG the possible vertex

is 0, meaning a1 + 2a2 + 3a3 + 4a4 ≡ 0 (mod 5). Moreover we want

2011 = a0 + 2x0 − x2 − x3

0 = a1 + 2x1 − x3 − x4

0 = a2 + 2x2 − x4 − x0

0 = a3 + 2x3 − x0 − x1

0 = a4 + 2x4 − x1 − x2.

We can ignore the first equation since its the sum of the other four, and we can WLOG
shift x0 → 0 by shifting each xi by a fixed amount. We will now solve the resulting
system of equations.

First, we have
x4 = 2x2 + a2 and x1 = 2x3 + a3.

Using these to remove all instances of x1 and x4 gives

2x2 − 3x3 = 2a3 + a1 − a2 and 2x3 − 3x2 = 2a2 + a4 − a3

whence we have a two-variable system of equations! To verify its solution is integral, note
that

x2 − x3 =
a1 − 3a2 + 3a3 − a4

5

is an integer, since

a1 − 3a2 + 3a3 − a4 ≡ a1 + 2a2 + 3a3 + 4a4 ≡ 0 (mod 5).
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Abbreviating a1−3a2+3a3−a4
5 as k, we obtain the desired xi:

x2 = 2a3 + a1 − a2 + 2k

x3 = x2 + k

x1 = 2x3 + a3

x4 = 2x2 + a2

x0 = 0.

This is the desired integer solution.

Remark. In principle, you could unwind all the definitions above to explicitly write every
xi as a function of a1, a2, a3, a4. If you did this, you could get the long equations

x0 = 0

x1 = − 1
5 (6a1 + 2a2 + 3a3 + 4a4)

x2 = − 1
5 (2a1 + 4a2 + a3 + 3a4)

x3 = − 1
5 (3a1 + a2 + 4a3 + 2a4)

x4 = − 1
5 (4a1 + 3a2 + 2a3 + 6a4)

which indeed are all integers whenever a1 + 2a2 + 3a3 + 4a4 ≡ 0 (mod 5).
However, this is quite tedious and also unnecessary to solve the problem. That’s because

we only care that the xi are integers, and do not need to actually know the values. This lets
us work more indirectly to avoid long calculation, as we did above.
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§1.3 USAMO 2011/3, proposed by Gabriel Carroll
Available online at https://aops.com/community/p2254803.

Problem statement

In hexagon ABCDEF , which is nonconvex but not self-intersecting, no pair of
opposite sides are parallel. The internal angles satisfy ∠A = 3∠D, ∠C = 3∠F ,
and ∠E = 3∠B. Furthermore AB = DE, BC = EF , and CD = FA. Prove that
diagonals AD, BE, and CF are concurrent.

We present the official solution. We say a hexagon is satisfying if it obeys the six conditions;
note that intuitively we expect three degrees of freedom for satisfying hexagons.

Main idea:

Claim — In a satisfying hexagon, B, D, F are reflections of A, C, E across the
sides of 4ACE.

(This claim looks plausible because every excellent hexagon is satisfying, and both
configuration spaces are three-dimensional.) Call a hexagon of this shape “excellent”; in
a excellent hexagon the diagonals clearly concur (at the orthocenter).

Set β = ∠B, δ = ∠D, ϕ = ∠F .
Now given a satisfying hexagon ABCDEF , construct a “phantom hexagon” A′B′C ′D′E′F ′

with the same angles which is excellent (see figure). This is possible since β+δ+ϕ = 180◦.

β

δ

φ

β

δ

φ

βφ

δ

A′

C ′ E′

B′

D′

F ′

AB

C

D

E

F

Then it would suffice to prove that:

Lemma
A satisfying hexagon is uniquely determined by its angles up to similarity. That is,
at most one hexagon (up to similarity) has angles β, δ, γ as above.

Proof. Consider any two satisfying hexagons ABCDEF and A′B′C ′D′E′F ′ (not neces-
sarily as constructed above!) with the same angles. We show they are similar.

To do this, consider the unit complex numbers in the directions
−−→
BA and

−−→
DE respectively

and let ~x denote their sum. Define ~y, ~z similarly. Note that the condition AB 6‖ DE
implies ~x 6= 0, and similarly. Then we have the identities

AB · ~x+ CD · ~y + EF · ~z = A′B′ · ~x+ C ′D′ · ~y + E′F ′ · ~z = 0.
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So we would obtain AB : CD : EF = A′B′ : C ′D′ : E′F ′ if only we could show that
~x, ~y, ~z are not multiples of each other (linear dependency reasons). This is a tiresome
computation with arguments, but here it is.

First note that none of β, δ, ϕ can be 90◦, since otherwise we get a pair of parallel
sides. Now work in the complex plane, fix a reference such that ~A− ~B has argument 0,
and assume ABCDEF are labelled counterclockwise. Then

• ~B − ~C has argument π − β

• ~C − ~D has argument −(β + 3ϕ)

• ~D − ~E has argument π − (β + 3ϕ+ δ)

• ~E − ~F has argument −(4β + 3ϕ+ δ)

So the argument of ~x has argument π−(β+3ϕ+δ)
2 (mod π). The argument of ~y has argument

π−(5β+3ϕ+δ)
2 (mod π). Their difference is 2β (mod π), and since β 6= 90◦, it follows that

~x and ~y are not multiples of each other; the other cases are similar.

Then the lemma implies ABCDEF ∼ A′B′C ′D′E′F and we’re done.

Remark. This problem turned out to be known already. It appears in this reference:

Nikolai Beluhov, Matematika, 2008, issue 6, problem 3.

It was reprinted as Kvant, 2009, issue 2, problem M2130; the reprint is available at http:
//kvant.ras.ru/pdf/2009/2009-02.pdf.

Remark. The vector perspective also shows the condition about parallel sides cannot be
dropped. Here is a counterexample from Ryan Kim in the event that it is.

A

C0

E
B0

D0

F

CB

D

By adjusting the figure above so that the triangles are right isosceles (instead of just right),
one also finds an example of a hexagon which is satisfying and whose diagonals are concurrent,
but which is not excellent.
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§2 Solutions to Day 2
§2.1 USAMO 2011/4, proposed by Sam Vandervelde
Available online at https://aops.com/community/p2254810.

Problem statement

Consider the assertion that for each positive integer n ≥ 2, the remainder upon
dividing 22

n by 2n− 1 is a power of 4. Either prove the assertion or find (with proof)
a counterexample.

We claim n = 25 is a counterexample. Since 225 ≡ 20 (mod 225 − 1), we have

22
25 ≡ 22

25 mod 25 ≡ 27 mod 225 − 1

and the right-hand side is actually the remainder, since 0 < 27 < 225. But 27 is not a
power of 4.

Remark. Really, the problem is just equivalent for asking 2n to have odd remainder when
divided by n.
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§2.2 USAMO 2011/5, proposed by Zuming Feng, Delong Meng
Available online at https://aops.com/community/p2254841.

Problem statement

Let P be a point inside convex quadrilateral ABCD. Points Q1 and Q2 are located
within ABCD such that

∠Q1BC = ∠ABP, ∠Q1CB = ∠DCP,

∠Q2AD = ∠BAP, ∠Q2DA = ∠CDP.

Prove that Q1Q2 ‖ AB if and only if Q1Q2 ‖ CD.

If AB ‖ CD there is nothing to prove. Otherwise let X = AB ∩ CD. Then the Q1 and
Q2 are the isogonal conjugates of P with respect to triangles XBC and XAD. Thus X,
Q1, Q2 are collinear, on the isogonal of XP with respect to ∠DXA = ∠CXB.

9

http://web.evanchen.cc
https://aops.com/community/p2254841


USAMO 2011 Solution Notes web.evanchen.cc, updated 8 December 2023

§2.3 USAMO 2011/6, proposed by Sid Graham
Available online at https://aops.com/community/p2254871.

Problem statement

Let A be a set with |A| = 225, meaning that A has 225 elements. Suppose further
that there are eleven subsets A1, . . . , A11 of A such that |Ai| = 45 for 1 ≤ i ≤ 11
and |Ai ∩ Aj | = 9 for 1 ≤ i < j ≤ 11. Prove that |A1 ∪ A2 ∪ · · · ∪ A11| ≥ 165, and
give an example for which equality holds.

Ignore the 225 — it is irrelevant.
Denote the elements of A1 ∪ · · · ∪A11 by a1, . . . , an, and suppose that ai appears xi

times among Ai for each 1 ≤ i ≤ n (so 1 ≤ xi ≤ 11). Then we have

11∑
i=1

xi =
11∑
i=1

|Ai| = 45 · 11

and
11∑
i=1

(
xi
2

)
=

∑
1≤i<j≤11

|Ai ∩Aj | =
(
11

2

)
· 9.

Therefore, we deduce that
∑

xi = 495 and
∑

i x
2
i = 1485. Now, by Cauchy Schwarz

n

(∑
i

x2i

)
≥
(∑

xi

)2
which implies n ≥ 4952

1485 = 165.
Equality occurs if we let A consist of the 165 three-element subsets of {1, . . . , 11} (plus

60 of your favorite reptiles if you really insist |A| = 225). Then we let Ai denote those
subsets containing i, of which there are

(
10
2

)
= 45, and so that |Ai ∩Aj | =

(
9
1

)
= 9.
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