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16 February 2024

This is a compilation of solutions for the 2010 USAMO. Some of the
solutions are my own work, but many are from the official solutions provided
by the organizers (for which they hold any copyrights), and others were found
by users on the Art of Problem Solving forums.

These notes will tend to be a bit more advanced and terse than the “official”
solutions from the organizers. In particular, if a theorem or technique is not
known to beginners but is still considered “standard”, then I often prefer to
use this theory anyways, rather than try to work around or conceal it. For
example, in geometry problems I typically use directed angles without further
comment, rather than awkwardly work around configuration issues. Similarly,
sentences like “let R denote the set of real numbers” are typically omitted
entirely.

Corrections and comments are welcome!
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§0 Problems
1. Let AXY ZB be a convex pentagon inscribed in a semicircle of diameter AB.

Denote by P , Q, R, S the feet of the perpendiculars from Y onto lines AX, BX,
AZ, BZ, respectively. Prove that the acute angle formed by lines PQ and RS is
half the size of ∠XOZ, where O is the midpoint of segment AB.

2. There are n students standing in a circle, one behind the other. The students have
heights h1 < h2 < · · · < hn. If a student with height hk is standing directly behind
a student with height hk−2 or less, the two students are permitted to switch places.
Prove that it is not possible to make more than

(
n
3

)
such switches before reaching a

position in which no further switches are possible.

3. The 2010 positive real numbers a1, a2, . . . , a2010 satisfy the inequality aiaj ≤ i+ j
for all 1 ≤ i < j ≤ 2010. Determine, with proof, the largest possible value of the
product a1a2 . . . a2010.

4. Let ABC be a triangle with ∠A = 90◦. Points D and E lie on sides AC and AB,
respectively, such that ∠ABD = ∠DBC and ∠ACE = ∠ECB. Segments BD and
CE meet at I. Determine whether or not it is possible for segments AB, AC, BI,
ID, CI, IE to all have integer lengths.

5. Let q = 3p−5
2 where p is an odd prime, and let

Sq =
1

2 · 3 · 4
+

1

5 · 6 · 7
+ · · ·+ 1

q(q + 1)(q + 2)
.

Prove that if 1
p − 2Sq =

m
n for integers m and n, then m− n is divisible by p.

6. There are 68 ordered pairs (not necessarily distinct) of nonzero integers on a
blackboard. It’s known that for no integer k does both (k, k) and (−k,−k) appear.
A student erases some of the 136 integers such that no two erased integers have sum
zero, and scores one point for each ordered pair with at least one erased integer.
What is the maximum possible score the student can guarantee?
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§1 Solutions to Day 1
§1.1 USAMO 2010/1, proposed by Titu Andreescu
Available online at https://aops.com/community/p1860802.

Problem statement

Let AXY ZB be a convex pentagon inscribed in a semicircle of diameter AB. Denote
by P , Q, R, S the feet of the perpendiculars from Y onto lines AX, BX, AZ, BZ,
respectively. Prove that the acute angle formed by lines PQ and RS is half the size
of ∠XOZ, where O is the midpoint of segment AB.

We present two possible approaches. The first approach is just “bare-hands” angle chasing.
The second approach requires more insight but makes it clearer what is going on; it
shows the intersection point of lines PQ and RS is the foot from the altitude from Y to
AB using Simson lines. The second approach also has the advantage that it works even
if AB is not a diameter of the circle.

¶ First approach using angle chasing. Define T = PQ ∩RS. Also, let 2α, 2β, 2γ, 2δ
denote the measures of arcs ÃX, X̄Y , Ỹ Z, Z̃B, respectively, so that α+β+ γ+ δ = 90◦.

2α

2β

2γ

2δ

A B

X

Y
Z

P

Q
R

S

T

We now compute the following angles:

∠SRY = ∠SZY = 90◦ − ∠Y ZA = 90◦ − (α+ β)

∠Y QP = ∠Y XP = 90◦ − ∠BXY = 90◦ − (γ + δ)

∠QY R = 180◦ − ∠(ZR,QX) = 180◦ − 2β + 2γ + 180◦

2
= 90◦ − (β + γ).

Hence, we can then compute

∠RTQ = 360◦ − (∠QY R+ (180◦ − ∠SRY ) + (180◦ − ∠Y QP ))

= ∠SRY + ∠Y QP − ∠QY R
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= (90◦ − (α+ β)) + (90◦ − (γ + δ))− (90◦ − (β + γ))

= 90◦ − (α+ δ)

= β + γ.

Since ∠XOZ = 2β+2γ
2 = β + γ, the proof is complete.

¶ Second approach using Simson lines, ignoring the diameter condition. In this
solution, we will ignore the condition that AB is a diameter; the solution works equally
well without it, as long as O is redefined as the center of (AXY ZB) instead. We will
again show the angle formed by lines PQ and RS is half the measure of X̃Z.

Unlike the previous solution, we instead define T to be the foot from Y to AB. Then
the Simson line of Y with respect to 4XAB passes through P , Q, T . Similarly, the
Simson line of Y with respect to 4ZAB passes through R, S, T . Therefore, point T
coincides with PQ ∩RS.

A B

X

Y
Z

P

Q
R

S

T

Now it’s straightforward to see APY RT is cyclic (in the circle with diameter AY ),
and therefore

∠RTY = ∠RAY = ∠ZAY.

Similarly,
∠Y TQ = ∠Y BQ = ∠Y BX.

Summing these gives ∠RTQ is equal to half the measure of arc X̃Z as needed.
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§1.2 USAMO 2010/2, proposed by David Speyer
Available online at https://aops.com/community/p1860777.

Problem statement

There are n students standing in a circle, one behind the other. The students have
heights h1 < h2 < · · · < hn. If a student with height hk is standing directly behind
a student with height hk−2 or less, the two students are permitted to switch places.
Prove that it is not possible to make more than

(
n
3

)
such switches before reaching a

position in which no further switches are possible.

The main claim is the following observation, which is most motivated in the situation
j − i = 2.

Claim — The students with heights hi and hj switch at most |j − i| − 1 times.

Proof. By induction on d = |j − i|, assuming j > i. For d = 1 there is nothing to prove.
For d ≥ 2, look at only students hj , hi+1 and hi ignoring all other students. After hj

and hi switch the first time, the relative ordering of the students must be hi → hj → hi+1.
Thereafter hj must always switch with hi+1 before switching with hi, so the inductive
hypothesis applies to give the bound 1 + j − (i+ 1)− 1 = j − i− 1.

Hence, the number of switches is at most∑
1≤i<j≤n

(|j − i| − 1) =

(
n

3

)
.

5

http://web.evanchen.cc
https://aops.com/community/p1860777


USAMO 2010 Solution Notes web.evanchen.cc, updated 16 February 2024

§1.3 USAMO 2010/3, proposed by Gabriel Carroll
Available online at https://aops.com/community/p1860806.

Problem statement

The 2010 positive real numbers a1, a2, . . . , a2010 satisfy the inequality aiaj ≤ i+ j
for all 1 ≤ i < j ≤ 2010. Determine, with proof, the largest possible value of the
product a1a2 . . . a2010.

The answer is 3×7×11×· · ·×4019, which is clearly an upper bound (and it’s not too hard
to show this is the lowest number we may obtain by multiplying 1005 equalities together;
this is essentially the rearrangement inequality). The tricky part is the construction.
Intuitively we want ai ≈

√
2i, but the details require significant care.

Note that if this is achievable, we will require anan+1 = 2n+ 1 for all odd n. Here are
two constructions:

• One can take the sequence such that a2008a2010 = 4018 and anan+1 = 2n + 1 for
all n = 1, 2, . . . , 2009. This can be shown to work by some calculation. As an
illustrative example,

a1a4 =
a1a2 · a3a4

a2a3
=

3 · 7
5

< 5.

• In fact one can also take an =
√
2n for all even n (and hence an−1 =

√
2n− 1√

2n

for such even n).

Remark. This is a chief example of an “abstract” restriction-based approach. One can
motivate it in three steps:

• The bound 3 · 7 · · · · · 4019 is provably best possible upper bound by pairing the
inequalities; also the situation with 2010 replaced by 4 is constructible with bound 21.

• We have an ≈
√
2n heuristically; in fact an =

√
2n satisfies inequalities by AM-GM.

• So we are most worried about aiaj ≤ i+ j when |i− j| is small, like |i− j| = 1.

I then proceeded to spend five hours on various constructions, but it turns out that the right
thing to do was just require akak+1 = 2k + 1, to make sure these pass: and the problem
almost solves itself.

Remark. When 2010 is replaced by 4 it is not too hard to manually write an explicit
example: say a1 =

√
3

1.1 , a2 = 1.1
√
3, a3 =

√
7

1.1 and a4 = 1.1
√
7. So this is a reason one might

guess that 3× 7× · · · × 4019 can actually be achieved in the large case.

Remark. Victor Wang says: I believe we can actually prove that WLOG (!) assume
aiai+1 = 2i + 1 for all i (but there are other ways to motivate that as well, like linear
programming after taking logs), which makes things a bit simpler to think about.
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§2 Solutions to Day 2
§2.1 USAMO 2010/4, proposed by Zuming Feng
Available online at https://aops.com/community/p1860753.

Problem statement

Let ABC be a triangle with ∠A = 90◦. Points D and E lie on sides AC and AB,
respectively, such that ∠ABD = ∠DBC and ∠ACE = ∠ECB. Segments BD and
CE meet at I. Determine whether or not it is possible for segments AB, AC, BI,
ID, CI, IE to all have integer lengths.

The answer is no. We prove that it is not even possible that AB, AC, CI, IB are all
integers.

B

A C

I

D

E

First, we claim that ∠BIC = 135◦. To see why, note that

∠IBC + ∠ICB =
∠B
2

+
∠C
2

=
90◦

2
= 45◦.

So, ∠BIC = 180◦ − (∠IBC + ∠ICB) = 135◦, as desired.
We now proceed by contradiction. The Pythagorean theorem implies

BC2 = AB2 +AC2

and so BC2 is an integer. However, the law of cosines gives

BC2 = BI2 + CI2 − 2BI · CI cos∠BIC

= BI2 + CI2 +BI · CI ·
√
2.

which is irrational, and this produces the desired contradiction.
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§2.2 USAMO 2010/5, proposed by Titu Andreescu
Available online at https://aops.com/community/p1860791.

Problem statement

Let q = 3p−5
2 where p is an odd prime, and let

Sq =
1

2 · 3 · 4
+

1

5 · 6 · 7
+ · · ·+ 1

q(q + 1)(q + 2)
.

Prove that if 1
p − 2Sq =

m
n for integers m and n, then m− n is divisible by p.

By partial fractions, we have

2

(3k − 1)(3k)(3k + 1)
=

1

3k − 1
− 2

3k
+

1

3k + 1
.

Thus

2Sq =

(
1

2
− 2

3
+

1

4

)
+

(
1

5
− 2

6
+

1

7

)
+ · · ·+

(
1

q
− 2

q + 1
+

1

q + 2

)
=

(
1

2
+

1

3
+

1

4
+ · · ·+ 1

q + 2

)
− 3

(
1

3
+

1

6
+ · · ·+ 1

q + 1

)
=

(
1

2
+

1

3
+

1

4
+ · · ·+ 1

q + 2

)
−

(
1

1
+

1

2
+ · · ·+ 1

q+1
3

)

=⇒ 2Sq −
1

p
+ 1 =

(
1

1
+

1

2
+ · · ·+ 1

p− 1

)
+

(
1

p+ 1
+

1

p+ 2
· · ·+ 1

q + 2

)
−

(
1

1
+

1

2
+ · · ·+ 1

q+1
3

)

Now we are ready to take modulo p. The given says that q − p+ 2 = q+1
3 , so

2Sq −
1

p
+ 1 =

(
1

1
+

1

2
+ · · ·+ 1

p− 1

)
+

(
1

p+ 1
+

1

p+ 2
+ · · ·+ 1

q + 2

)
−

(
1

1
+

1

2
+ · · ·+ 1

q+1
3

)

≡
(
1

1
+

1

2
+ · · ·+ 1

p− 1

)
+

(
1

1
+

1

2
+ · · ·+ 1

q − p+ 2

)
−

(
1

1
+

1

2
+ · · ·+ 1

q+1
3

)
=

1

1
+

1

2
+ · · ·+ 1

p− 1

≡ 0 (mod p).

So 1
p − 2Sq ≡ 1 (mod p) which is the desired.
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§2.3 USAMO 2010/6, proposed by Gerhard Woeginger
Available online at https://aops.com/community/p1860794.

Problem statement

There are 68 ordered pairs (not necessarily distinct) of nonzero integers on a black-
board. It’s known that for no integer k does both (k, k) and (−k,−k) appear. A
student erases some of the 136 integers such that no two erased integers have sum
zero, and scores one point for each ordered pair with at least one erased integer.
What is the maximum possible score the student can guarantee?

The answer is 43.
The structure of this problem is better understood as follows: we construct a multigraph

whose vertices are the entries, and the edges are the 68 ordered pairs on the blackboard.
To be precise, construct a multigraph G with vertices a1, b1, . . . , an, bn, with ai = −bi
for each i. The ordered pairs then correspond to 68 edges in G, with self-loops allowed
(WLOG) only for vertices ai. The student may then choose one of {ai, bi} for each i and
wishes to maximize the number of edges adjacent to the set of chosen vertices.

3

7

8

2

−3

−7

−8

−2

First we use the probabilistic method to show N ≥ 43. We select the real number
p =

√
5−1
2 ≈ 0.618 satisfying p = 1− p2. For each i we then select ai with probability p

and bi with probability 1− p. Then

• Every self-loop (ai, ai) is chosen with probability p.

• Any edge (bi, bj) is chosen with probability 1− p2.

All other edges are selected with probability at least p, so in expectation we have
68p ≈ 42.024 edges scored. Hence N ≥ 43.

For a construction showing 43 is optimal, we let n = 8, and put five self-loops on each
ai, while taking a single K8 on the bi’s. The score achieved for selecting m of the ai’s
and 8−m of the bi’s is

5m+

((
8

2

)
−
(
m

2

))
≤ 43

with equality when either m = 5 and m = 6.
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Remark (Colin Tang). Here is one possible motivation for finding the construction. In
equality case we probably want all the edges to either be ai loops or bibj edges. Now if
bi and bj are not joined by an edge, one can “merge them together”, also combining the
corresponding ai’s, to get another multigraph with 68 edges whose optimal score is at most
the original ones. So by using this smoothing algorithm, we can reduce to a situation where
the bi and bj are all connected to each other.

It’s not unnatural to assume it’s a clique then, at which point fiddling with parameters
gives the construction. Also, there is a construction for d2/3ne which is not too difficult to
find, and applying this smoothing operation to this construction could suggest a clique of at
least 8 vertices too.

Remark (David Lee). One could consider changing the probability p(n) to be a function of
the number n of non-loops (hence there are 68− n loops); we would then have

E[points] ≥ (68− n)p(n) + n(1− p(n)2).

The optimal value of p(n) is then

p(n) =

{
68−n
2n = 34

n − 1
2 n ≥ 23

1 n < 22.

For n > 23 we then have

E(n) =(68− n)

(
34

n
− 1

2

)
+ n

(
1−

(
34

n
− 1

2

)2
)

=
5n

4
+

342

n
− 34

which has its worst case at around 5n2 = 682, so at n = 30 and n = 31. Indeed, one can find

E(30) = 42.033

E(31) = 42.040.

This gives another way to get the lower bound 43, and gives a hint about approximately
how many non-loops one would want in order to achieve such a bound.

10

http://web.evanchen.cc

	Problems
	Solutions to Day 1
	USAMO 2010/1, proposed by Titu Andreescu
	USAMO 2010/2, proposed by David Speyer
	USAMO 2010/3, proposed by Gabriel Carroll

	Solutions to Day 2
	USAMO 2010/4, proposed by Zuming Feng
	USAMO 2010/5, proposed by Titu Andreescu
	USAMO 2010/6, proposed by Gerhard Woeginger


