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This is a compilation of solutions for the 2006 USAMO. Some of the
solutions are my own work, but many are from the official solutions provided
by the organizers (for which they hold any copyrights), and others were found
by users on the Art of Problem Solving forums.

These notes will tend to be a bit more advanced and terse than the “official”
solutions from the organizers. In particular, if a theorem or technique is not
known to beginners but is still considered “standard”, then I often prefer to
use this theory anyways, rather than try to work around or conceal it. For
example, in geometry problems I typically use directed angles without further
comment, rather than awkwardly work around configuration issues. Similarly,
sentences like “let R denote the set of real numbers” are typically omitted
entirely.

Corrections and comments are welcome!
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§0 Problems
1. Let p be a prime number and let s be an integer with 0 < s < p. Prove that there

exist integers m and n with 0 < m < n < p and{
sm

p

}
<

{
sn

p

}
<

s

p

if and only if s is not a divisor of p− 1.

2. Let k > 0 be a fixed integer. Compute the minimum integer N (in terms of k) for
which there exists a set of 2k + 1 distinct positive integers that has sum greater
than N , but for which every subset of size k has sum at most N/2.

3. For integral m, let p(m) be the greatest prime divisor of m. By convention, we
set p(±1) = 1 and p(0) = ∞. Find all polynomials f with integer coefficients such
that the sequence

{p(f(n2))− 2n}n≥0

is bounded above. (In particular, this requires f(n2) 6= 0 for n ≥ 0.)

4. Find all positive integers n for which there exist an integer k ≥ 2 and positive
rational numbers a1, . . . , ak satisfying a1 + a2 + · · ·+ ak = a1a2 . . . ak = n.

5. A mathematical frog jumps along the number line. The frog starts at 1, and jumps
according to the following rule: if the frog is at integer n, then it can jump either
to n + 1 or to n + 2mn+1 where 2mn is the largest power of 2 that is a factor of
n. Show that if k ≥ 2 is a positive integer and i is a nonnegative integer, then
the minimum number of jumps needed to reach 2ik is greater than the minimum
number of jumps needed to reach 2i.

6. Let ABCD be a quadrilateral, and let E and F be points on sides AD and BC,
respectively, such that AE

ED = BF
FC . Ray FE meets rays BA and CD at S and T ,

respectively. Prove that the circumcircles of triangles SAE, SBF , TCF , and TDE
pass through a common point.
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§1 Solutions to Day 1
§1.1 USAMO 2006/1, proposed by Kiran Kedlaya
Available online at https://aops.com/community/p490569.

Problem statement

Let p be a prime number and let s be an integer with 0 < s < p. Prove that there
exist integers m and n with 0 < m < n < p and{

sm

p

}
<

{
sn

p

}
<

s

p

if and only if s is not a divisor of p− 1.

It’s equivalent to ms mod p < ns mod p < s, where x mod p means the remainder when
x is divided by p, by slight abuse of notation. We will assume s ≥ 2 for simplicity, since
the case s = 1 is clear.

For any x ∈ {1, 2, . . . , s− 1} we define f(x) to be the unique number in {1, . . . , p− 1}
such that s · f(x) mod p = x. Then, m and n fail to exist exactly when

f(s− 1) < f(s− 2) < · · · < f(1).

We give the following explicit description of f : choose t ≡ −s−1 (mod p), 0 < t < p.
Then f(x) = 1 + (s− x) · t mod p. So our displayed inequality is equivalent to

(1 + t) mod p < (1 + 2t) mod p < (1 + 3t) mod p < · · · < (1 + (s− 1)t) mod p.

This just means that the sequence 1 + kt never “wraps around” modulo p as we take
k = 1, 2, . . . , s− 1.

Since we assumed s 6= 1, we have 0 < 1 + t < p. Now since 1 + kt never wraps around
as k = 1, 2, . . . , s− 1, and increases in increments of t, it follows that 1 + kt < p for all
k = 1, 2, . . . , s− 1. Finally, as 1 + st ≡ 0 (mod p) we get 1 + st = p.

In summary, m, n fail to exist precisely when 1 + st = p. That is of course equivalent
to s | p− 1.
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§1.2 USAMO 2006/2, proposed by Dick Gibbs
Available online at https://aops.com/community/p490581.

Problem statement

Let k > 0 be a fixed integer. Compute the minimum integer N (in terms of k) for
which there exists a set of 2k+1 distinct positive integers that has sum greater than
N , but for which every subset of size k has sum at most N/2.

The answer is N = k(2k2 + 3k + 3) given by

S =
{
k2 + 1, k2 + 2, . . . , k2 + 2k + 1

}
.

To show this is best possible, let the set be S = {a0 < a1 < · · · < a2k} so that the
hypothesis becomes

N + 1 ≤ a0 + a1 + · · ·+ a2k

N/2 ≥ ak+1 + · · ·+ a2k.

Subtracting twice the latter from the former gives

a0 ≥ 1 + (ak+1 − a1) + (ak+2 − a2) + · · ·+ (a2k − ak)

≥ 1 + k + k + · · ·+ k︸ ︷︷ ︸
k terms

= 1 + k2.

Now, we have

N/2 ≥ ak+1 + · · ·+ a2k

≥ (a0 + (k + 1)) + (a0 + (k + 2)) + · · ·+ (a0 + 2k)

= k · a0 + ((k + 1) + · · ·+ 2k)

≥ k(k2 + 1) + k · 3k + 1

2

so N ≥ k(2k2 + 3k + 3).

Remark. The exact value of N is therefore very superficial. From playing with these
concrete examples we find out we are essentially just trying to find an increasing set S
obeying

a0 + a1 + · · ·+ ak > ak+1 + · · ·+ a2k (?)

and indeed given a sequence satisfying these properties one simply sets N = 2(ak+1+· · ·+a2k).
Therefore we can focus almost entirely on ai and not N .

Remark. It is relatively straightforward to figure out what is going on based on the small
cases. For example, one can work out by hand that

• {2, 3, 4} is optimal for k = 1

• {5, 6, 7, 8, 9} is optimal for k = 2,

• {10, 11, 12, 13, 14, 15, 16} is optimal for k = 3.

In all the examples, the ai are an arithmetic progression of difference 1, so that aj−ai ≥ j−i
is a sharp for all i < j, and thus this estimate may be used freely without loss of sharpness;
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applying it in (?) gives a lower bound on a0 which is then good enough to get a lower bound
on N matching the equality cases we found empirically.
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§1.3 USAMO 2006/3, proposed by Titu Andreescu, Gabriel Dospinescu
Available online at https://aops.com/community/p490625.

Problem statement

For integral m, let p(m) be the greatest prime divisor of m. By convention, we set
p(±1) = 1 and p(0) = ∞. Find all polynomials f with integer coefficients such that
the sequence

{p(f(n2))− 2n}n≥0

is bounded above. (In particular, this requires f(n2) 6= 0 for n ≥ 0.)

If f is the (possibly empty) product of linear factors of the form 4n− a2, then it satisfies
the condition. We will prove no other polynomials work. In what follows, assume f is
irreducible and nonconstant.

It suffices to show for every positive integer c, there exists a prime p and a nonnegative
integer n such that n ≤ p−1

2 − c and p divides f(n2).
Firstly, recall there are infinitely many odd primes p, with p > c, such that p divides

some f(n2), by Schur’s Theorem. Looking mod such a p we can find n between 0 and
p−1
2 (since n2 ≡ (−n)2 (mod p)). We claim that only finitely many p from this set can

fail now. For if a p fails, then its n must be between p−1
2 − c and p−1

2 . That means for
some 0 ≤ k ≤ c we have

0 ≡ f

((
p− 1

2
− k

)2
)

≡ f

((
k +

1

2

)2
)

(mod p).

There are only finitely many p dividing

c∏
k=1

f

((
k +

1

2

)2
)

unless one of the terms in the product is zero; this means that 4n − (2k + 1)2 divides
f(n). This establishes the claim and finishes the problem.
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§2 Solutions to Day 2
§2.1 USAMO 2006/4, proposed by Ricky Liu
Available online at https://aops.com/community/p490647.

Problem statement

Find all positive integers n for which there exist an integer k ≥ 2 and positive
rational numbers a1, . . . , ak satisfying a1 + a2 + · · ·+ ak = a1a2 . . . ak = n.

The answer is all n other than 1, 2, 3, 5.

Claim — The only solution with n ≤ 5 is n = 4.

Proof. The case n = 4 works since 2 + 2 = 2 · 2 = 4. So assume n > 4.
We now contend that k > 2. Indeed, if a1 + a2 = a1a2 = n then (a1 − a2)

2 =
(a1 + a2)

2 − 4a1a2 = n2 − 4n = (n− 2)2 − 4 is a rational integer square, hence a perfect
square. This happens only when n = 4.

Now by AM-GM,
n

k
=

a1 + · · ·+ ak
k

≥ k
√
a1 . . . ak = n1/k

and so n ≥ k
1

1−1/k = k
k

k−1 . This last quantity is always greater than 5, since

33/2 = 3
√
3 > 5

44/3 = 4
3
√
4 > 5

k
k

k−1 > k ≥ 5 ∀k ≥ 5.

This finishes the proof.

Now, in general:

• If n ≥ 6 is even, we may take (a1, . . . , an/2) = (n/2, 2, 1, . . . , 1).

• If n ≥ 9 is odd, we may take (a1, . . . , a(n−3)/2) = (n/2, 1/2, 4, 1, . . . , 1).

• A special case n = 7: one example is (4/3, 7/6, 9/2). (Another is (7/6, 4/3, 3/2, 3).)

Remark. The main hurdle in the problem is the n = 7 case. One good reason to believe a
construction exists is that it seems quite difficult to prove that n = 7 fails.
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§2.2 USAMO 2006/5, proposed by Zoran Sunik
Available online at https://aops.com/community/p490682.

Problem statement

A mathematical frog jumps along the number line. The frog starts at 1, and jumps
according to the following rule: if the frog is at integer n, then it can jump either to
n+1 or to n+2mn+1 where 2mn is the largest power of 2 that is a factor of n. Show
that if k ≥ 2 is a positive integer and i is a nonnegative integer, then the minimum
number of jumps needed to reach 2ik is greater than the minimum number of jumps
needed to reach 2i.

We will think about the problem in terms of finite sequences of jumps (s1, s2, . . . , s`),
which we draw as

1 = x0
s1−→ x1

s2−→ x2
s3−→ . . .

s`−→ x`

where sk = xk − xk−1 is the length of some hop. We say the sequence is valid if it has
the property required by the problem: for each k, either sk = 1 or sk = 2mxk−1

+1.
An example is shown below.

Lemma
Let (s1, . . . , s`) be a sequence of jumps. Suppose we delete pick an index k and
exponent e > 0, and delete any jumps after the kth one which are divisible by 2e.
The resulting sequence is still valid.

Proof. We only have to look after the kth jump. The launching points of the remaining
jumps after the kth one are now shifted by multiples of 2e due to the deletions; so given
a jump x

s−→ x+ s we end up with a jump x′
s−→ x′ + s where x− x′ is a multiple of 2e.

But since s < 2e, we have ν2(x
′) < e and hence ν2(x) = ν2(x

′) so the jump is valid.

1 2 3 4 5 6 7 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 248

2

1

8

1

1

4

1

2

2

1

1 2 3 4 5 6 7 8

2

1 1

1 1

1

Now let’s consider a valid path to 2ik with ` steps, say

1 = x0
s1−→ x1

s2−→ x2
s3−→ . . .

s`−→ x` = 2i · k

where si = xi − xi−1 is the distance jumped.
We delete jumps in the following way: starting from the largest e and going downwards

until e = 0, we delete all the jumps of length 2e which end at a point exceeding the target
2i.

By the lemma, at each stage, the path remains valid. We claim more:
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Claim — Let e ≥ 0. After the jumps of length greater than 2e are deleted, the
resulting end-point is at least 2i, and divisible by 2min(i,e).

Proof. By downwards induction. Consider any step where some jump is deleted. Then,
the end-point must be strictly greater than x = 2i − 2e (i.e. we must be within 2e of the
target 2i).

It is also divisible by 2min(i,e) by induction hypothesis, since we are changing the
end-point by multiples of 2e. And the smallest multiple of 2min(i,e) exceeding x is 2i.

On the other hand by construction when the process ends the reduced path ends at a
point at most 2i, so it is 2i as desired.

Therefore we have taken a path to 2ik and reduced it to one to 2i by deleting some
jumps. This proves the result.
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§2.3 USAMO 2006/6, proposed by Zuming Feng, Zhonghao Ye
Available online at https://aops.com/community/p490691.

Problem statement

Let ABCD be a quadrilateral, and let E and F be points on sides AD and BC,
respectively, such that AE

ED = BF
FC . Ray FE meets rays BA and CD at S and T ,

respectively. Prove that the circumcircles of triangles SAE, SBF , TCF , and TDE
pass through a common point.

A

B C

D

M

E

F

S

T

P

Q

Let M be the Miquel point of ABCD. Then M is the center of a spiral similarity
taking AD to BC. The condition guarantees that it also takes E to F . Hence, we
see that M is the center of a spiral similarity taking AB to EF , and consequently the
circumcircles of QAB, QEF , SAE, SBF concur at point M .

In other words, the Miquel point of ABCD is also the Miquel point of ABFE. Similarly,
M is also the Miquel point of EDCF , so all four circles concur at M .
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