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This is a compilation of solutions for the 2005 USAMO. The ideas of the
solution are a mix of my own work, the solutions provided by the competition
organizers, and solutions found by the community. However, all the writing
is maintained by me.

These notes will tend to be a bit more advanced and terse than the “official”
solutions from the organizers. In particular, if a theorem or technique is not
known to beginners but is still considered “standard”, then I often prefer to
use this theory anyways, rather than try to work around or conceal it. For
example, in geometry problems I typically use directed angles without further
comment, rather than awkwardly work around configuration issues. Similarly,
sentences like “let R denote the set of real numbers” are typically omitted
entirely.

Corrections and comments are welcome!
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§0 Problems
1. Determine all composite positive integers n for which it is possible to arrange all

divisors of n that are greater than 1 in a circle so that no two adjacent divisors are
relatively prime.

2. Prove that the system of equations

x6 + x3 + x3y + y = 147157

x3 + x3y + y2 + y + z9 = 157147

has no integer solutions.

3. Let ABC be an acute-angled triangle, and let P and Q be two points on side BC.
Construct a point C1 in such a way that the convex quadrilateral APBC1 is cyclic,
QC1 ‖ CA, and C1 and Q lie on opposite sides of line AB. Construct a point B1

in such a way that the convex quadrilateral APCB1 is cyclic, QB1 ‖ BA, and B1

and Q lie on opposite sides of line AC. Prove that the points B1, C1, P , and Q lie
on a circle.

4. Legs L1, L2, L3, L4 of a square table each have length n, where n is a positive
integer. For how many ordered 4-tuples (k1, k2, k3, k4) of nonnegative integers can
we cut a piece of length ki from the end of leg Li and still have a stable table?
(The table is stable if it can be placed so that all four of the leg ends touch the
floor. Note that a cut leg of length 0 is permitted.)

5. Let n > 1 be an integer. Suppose 2n points are given in the plane, no three of
which are collinear. Suppose n of the given 2n points are colored blue and the other
n colored red. A line in the plane is called a balancing line if it passes through one
blue and one red point and, for each side of the line, the number of blue points on
that side is equal to the number of red points on the same side. Prove that there
exist at least two balancing lines.

6. For a positive integer m, let s(m) denote the sum of the decimal digits of m. A set
S positive integers is k-stable if s(

∑
x∈X x) = k for any nonempty subset X ⊆ S.

For each integer n ≥ 2 let f(n) be the minimal k for which there exists a k-stable
set with n integers. Prove that there are constants 0 < C1 < C2 with

C1 log10 n ≤ f(n) ≤ C2 log10 n.
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§1 Solutions to Day 1
§1.1 USAMO 2005/1, proposed by Zuming Feng
Available online at https://aops.com/community/p213007.

Problem statement

Determine all composite positive integers n for which it is possible to arrange all
divisors of n that are greater than 1 in a circle so that no two adjacent divisors are
relatively prime.

The only bad ones are n = pq, products of two distinct primes. Clearly they can’t be so
arranged, so we show all others work.

• If n is a power of a prime, the result is obvious; any arrangement works.

• If n = pe11 . . . pekk for some k ≥ 3, then first situate p1p2, p2p3, . . . , pkp1 on the
circle. Then we can arbitrarily place any multiples of pi between pi−1pi and pipi+1.
This finishes this case.

• Finally suppose n = paqb. If a > 1, say, we can repeat the argument by first placing
pq and p2q and then placing multiples of p in one arc and multiples of q in the
other arc. On the other hand the case a = b = 1 is seen to be impossible.
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§1.2 USAMO 2005/2, proposed by Răzvan Gelca
Available online at https://aops.com/community/p213009.

Problem statement

Prove that the system of equations

x6 + x3 + x3y + y = 147157

x3 + x3y + y2 + y + z9 = 157147

has no integer solutions.

Sum the equations and add 1 to both sides to get

(x3 + y + 1)2 + z9 = 147157 + 157147 + 1 ≡ 14 (mod 19)

But a2 + b9 6≡ 14 (mod 19) for any integers a and b, since the ninth powers modulo 19
are 0, ±1 and none of {13, 14, 15} are squares modulo 19. Therefore, there are no integer
solutions.

Remark. In fact, a2 + b3 6≡ 14 (mod 19) has no solutions modulo 19 either.

Remark. It can also be checked that the original system has no equations modulo 13,
although this requires using both equations rather than just their sum. (As in the modulo
19 situation, z9 may be replaced by z3 and this remark still holds.)
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§1.3 USAMO 2005/3, proposed by Zuming Feng
Available online at https://aops.com/community/p213011.

Problem statement

Let ABC be an acute-angled triangle, and let P and Q be two points on side BC.
Construct a point C1 in such a way that the convex quadrilateral APBC1 is cyclic,
QC1 ‖ CA, and C1 and Q lie on opposite sides of line AB. Construct a point B1 in
such a way that the convex quadrilateral APCB1 is cyclic, QB1 ‖ BA, and B1 and
Q lie on opposite sides of line AC. Prove that the points B1, C1, P , and Q lie on a
circle.

It is enough to prove that A, B1, and C1 are collinear, since then ]C1QP = ]ACP =
]AB1P = ]C1B1P .

A

B CP

B1

Q

C1

¶ First solution. Let T be the second intersection of AC1 with (APC). Then readily
4PC1T ∼ 4ABC. Consequently, QC1 ‖ AC implies TC1QP cyclic. Finally, TQ ‖ AB
now follows from the cyclic condition, so T = B1 as desired.

¶ Second solution. One may also use barycentric coordinates. Let P = (0,m, n) and
Q = (0, r, s) with m+ n = r + s = 1. Once again,

(APB) : −a2yz − b2zx− c2xy + (x+ y + z)(a2m · z) = 0.

Set C1 = (s− z, r, z), where C1Q ‖ AC follows by (s− z)+ r+ z = 1. We solve for this z.

0 = −a2rz + (s− z)(−b2z − c2r) + a2mz

= b2z2 + (−sb2 + rc2)z − a2rz + a2mz − c2rs

= b2z2 + (−sb2 + rc2 + a2(m− r))z − c2rs

=⇒ 0 = rb2
(z
r

)2
+ (−sb2 + rc2 + a2(m− r))

(z
r

)
− c2s.

So the quotient of the z and y coordinates of C1 satisfies this quadratic. Similarly, if
B1 = (r − y, y, s) we obtain that

0 = sc2
(y
s

)2
+ (−rc2 + sb2 + a2(n− s))

(y
s

)
− b2r
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Since these two quadratics are the same when one is written backwards (and negated), it
follows that their roots are reciprocals. But the roots of the quadratics represent z

y and y
z

for the points C1 and B1, respectively. This implies (with some configuration blah) that
the points B1 and C1 are collinear with A = (1, 0, 0) (in some line of the form y

z = k), as
desired.
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§2 Solutions to Day 2
§2.1 USAMO 2005/4, proposed by Elgin Johnston
Available online at https://aops.com/community/p213012.

Problem statement

Legs L1, L2, L3, L4 of a square table each have length n, where n is a positive
integer. For how many ordered 4-tuples (k1, k2, k3, k4) of nonnegative integers can
we cut a piece of length ki from the end of leg Li and still have a stable table?

(The table is stable if it can be placed so that all four of the leg ends touch the
floor. Note that a cut leg of length 0 is permitted.)

Flip the table upside-down so that that the table’s surface rests on the floor. Then, we
see that we want the truncated legs to have endpoints A, B, C, D which are coplanar
(say).

Claim — This occurs if and only if ABCD is a parallelogram.

Proof. Obviously ABCD being a parallelogram is sufficient. Conversely, if they are
coplanar, we let D′ be such that ABCD′ is a parallelogram. Then D′ also lies in the
same plane as ABCD, but is situated directly above D (since the table was a square).
This implies D′ = D, as needed.

In still other words, we are counting the number of solutions to

(n− k1) + (n− k3) = (n− k2) + (n− k4) ⇐⇒ k1 + k3 = k2 + k4.

Define
ar = #{(a, b) | a+ b = r, 0 ≤ a, b ≤ n}

so that the number of solutions to k1 + k3 = k2 + k4 = r is just given by a2r. We now
just compute

2n∑
r=0

a2r = 12 + 22 + · · ·+ n2 + (n+ 1)2 + n2 + · · ·+ 12

=
1

3
(n+ 1)(2n2 + 4n+ 3).
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§2.2 USAMO 2005/5, proposed by Kiran Kedlaya
Available online at https://aops.com/community/p213018.

Problem statement

Let n > 1 be an integer. Suppose 2n points are given in the plane, no three of which
are collinear. Suppose n of the given 2n points are colored blue and the other n
colored red. A line in the plane is called a balancing line if it passes through one
blue and one red point and, for each side of the line, the number of blue points on
that side is equal to the number of red points on the same side. Prove that there
exist at least two balancing lines.

Consider the convex hull H of the polygon. There are two cases.

¶ Easy case: the convex hull has both colors. If the convex hull H is not all the same
color, there exist two edges of H (at least) which have differently colored endpoints. The
extensions of those sides form balancing lines; indeed given any such line ` one side of `
has no points, the other has n− 1 red and n− 1 blue points.

¶ Harder case: the convex hull is all one color. Now assume H is all blue (WLOG).
We will prove there are at least |H| balancing lines in the following way.

Claim — For any vertex B of H there is a balancing line through it.

Proof. Assume A, B, C are three consecutive blue vertices of H. Imagine starting with
line ` passing through B and A, then rotating it through B until it coincides with line
BC, through the polygon.

H

B

A C

ℓ

During this process, we consider the set of points on the same side of ` as C, and let x
be the number of such red points minus the number of such blue points. Note that:

• Every time ` touches a blue point, x increases by 1.

• Every time ` touches a red point, x decreases by 1.

• Initially, x = +1.

• Just before reaching the end we have x = −1.
So at the moment where x first equals zero, we have found our balancing line.
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§2.3 USAMO 2005/6, proposed by Titu Andreescu, Gabriel Dospinescu
Available online at https://aops.com/community/p213014.

Problem statement

For a positive integer m, let s(m) denote the sum of the decimal digits of m. A set
S positive integers is k-stable if s(

∑
x∈X x) = k for any nonempty subset X ⊆ S.

For each integer n ≥ 2 let f(n) be the minimal k for which there exists a k-stable
set with n integers. Prove that there are constants 0 < C1 < C2 with

C1 log10 n ≤ f(n) ≤ C2 log10 n.

¶ Construction showing f(n) ≤ 9
⌈
log10

(
n+1
2

)⌉
. Let n ≥ 1 and e ≥ 1 be integers

satisfying 1 + 2 + · · ·+ n < 10e. Consider the set

S = {10e − 1, 2(10e − 1), . . . , n(10e − 1)} .

For example, if n = 6 and e = 3, we have S = {999, 1998, 2997, 3996, 4995, 5994}.
The set S here is easily seen to be 9e-stable. Thus f(n) ≤ 9

⌈
log10

(
n+1
2

)⌉
, proving one

direction.

Remark. I think the problem is actually more natural with a multiset S rather than a
vanilla set, in which case S = {10e − 1, 10e − 1, . . . , 10e − 1} works fine, and is easier to
think of.

In some sense the actual construction is obtained by starting with this one, and then
pushing together the terms together in order to get the terms to be distinct, hence the
1 + 2 + · · ·+ n appearance.

¶ Proof that f(n) ≥ log12 n. We are going to prove the following, which obviously
sufficient.

Claim — Let k be a positive integer. In any (multi)set S of more than 12k integers,
there exists a subset whose sum of decimal digits exceeds k.

Proof. Imagine writing entries of S on a blackboard, while keeping a running sum Σ
initially set to zero. For i = 1, 2, . . . we will have a process such that at the end of the
ith step all entries on the board are divisible by 10i. It goes as follows:

• If the ith digit from the right of Σ is nonzero, then arbitrarily partition the numbers
on the board into groups of 10, erasing any leftover numbers. Within each group of
10, we can find a nonempty subset with sum 0 mod 10i; we then erase each group
and replace it with that sum.

• If the ith digit from the right of Σ is zero, but some entry on the board is not
divisible by 10i, then we erase that entry and add it to Σ. Then we do the grouping
as in the previous step.

• If the ith digit from the right of Σ is zero, and all entries on the board are divisible
by 10i, we do nothing and move on to the next step.
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This process ends when no numbers remain on the blackboard. The first and second
cases occur at least k + 1 times (the number of entries decreases by a factor of at most
12 each step), and each time Σ gets some nonzero digit, which is never changed at later
steps. Therefore Σ has sum of digits at least k + 1 as needed.

Remark. The official solutions contain a slicker proof: it turns out that any multiple of
10e − 1 has sum of decimal digits at least 9e. However, if one does not know this lemma it
seems nontrivial to imagine coming up with it.
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