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This is a compilation of solutions for the 2004 USAMO. The ideas of the
solution are a mix of my own work, the solutions provided by the competition
organizers, and solutions found by the community. However, all the writing
is maintained by me.

These notes will tend to be a bit more advanced and terse than the “official”
solutions from the organizers. In particular, if a theorem or technique is not
known to beginners but is still considered “standard”, then I often prefer to
use this theory anyways, rather than try to work around or conceal it. For
example, in geometry problems I typically use directed angles without further
comment, rather than awkwardly work around configuration issues. Similarly,
sentences like “let R denote the set of real numbers” are typically omitted
entirely.

Corrections and comments are welcome!
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§0 Problems
1. Let ABCD be a quadrilateral circumscribed about a circle, whose interior and

exterior angles are at least 60 degrees. Prove that

1

3
|AB3 −AD3| ≤ |BC3 − CD3| ≤ 3|AB3 −AD3|.

When does equality hold?

2. Let a1, a2, . . . , an be integers whose greatest common divisor is 1. Let S be a set
of integers with the following properties:
(a) ai ∈ S for i = 1, . . . , n.
(b) ai − aj ∈ S for i, j = 1, . . . , n, not necessarily distinct.
(c) If x, y ∈ S and x+ y ∈ S, then x− y ∈ S too.

Prove that S = Z.

3. For what real values of k > 0 is it possible to dissect a 1 × k rectangle into two
similar but noncongruent polygons?

4. Alice and Bob play a game on a 6 by 6 grid. On his turn, a player chooses a rational
number not yet appearing in the grid and writes it in an empty square of the grid.
Alice goes first and then the players alternate. When all squares have numbers
written in them, in each row, the square with the greatest number in that row is
colored black. Alice wins if he can then draw a line from the top of the grid to the
bottom of the grid that stays in black squares, and Bob wins if he can’t. (If two
squares share a vertex, Alice can draw a line from one to the other that stays in
those two squares.) Find, with proof, a winning strategy for one of the players.

5. Let a, b, c be positive reals. Prove that

(a5 − a2 + 3)(b5 − b2 + 3)(c5 − c2 + 3) ≥ (a+ b+ c)3 .

6. A circle ω is inscribed in a quadrilateral ABCD. Let I be the center of ω. Suppose
that

(AI +DI)2 + (BI + CI)2 = (AB + CD)2.

Prove that ABCD is an isosceles trapezoid.
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§1 Solutions to Day 1
§1.1 USAMO 2004/1, proposed by Titu Andreescu
Available online at https://aops.com/community/p17439.

Problem statement

Let ABCD be a quadrilateral circumscribed about a circle, whose interior and
exterior angles are at least 60 degrees. Prove that

1

3
|AB3 −AD3| ≤ |BC3 − CD3| ≤ 3|AB3 −AD3|.

When does equality hold?

Clearly it suffices to show the left inequality. Since AB + CD = BC + AD =⇒
|AB −AD| = |BC − CD|, it suffices to prove

1

3
(AB2 +AB ·AD +AD2) ≤ BC2 +BC · CD + CD2.

This follows by noting that

BC2 +BC · CD + CD2 ≥ BC2 + CD2 − 2(BC)(CD) cos(∠BCD)

= BD2

= AB2 +AD2 − 2(AB)(AD) cos(∠BAD)

≥ AB2 +AD2 −AB ·AD

≥ 1
3(AB2 +AD2 +AB ·AD)

the last line following by AM-GM.
The equality holds iff ABCD is a kite with AB = AD, CB = CD.
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§1.2 USAMO 2004/2, proposed by Kiran Kedlaya
Available online at https://aops.com/community/p17440.

Problem statement

Let a1, a2, . . . , an be integers whose greatest common divisor is 1. Let S be a set of
integers with the following properties:

(a) ai ∈ S for i = 1, . . . , n.

(b) ai − aj ∈ S for i, j = 1, . . . , n, not necessarily distinct.

(c) If x, y ∈ S and x+ y ∈ S, then x− y ∈ S too.

Prove that S = Z.

The idea is to show any linear combination of the ai are in S, which implies (by Bezout)
that S = Z. This is pretty intuitive, but the details require some care (in particular there
is a parity obstruction at the second lemma).

First, we make the following simple observations:

• 0 ∈ S, by putting i = j = 1 in (b).

• s ∈ S ⇐⇒ −s ∈ S, by putting x = 0 in (c).

Now, we prove that:

Lemma
For any integers c, d, and indices i, j, we have cai + daj ∈ S.

Proof. We will assume c, d > 0 since the other cases are analogous. In that case it
follows by induction on c + d; for example cai + (d − 1)aj , aj , cai + daj in S implies
cai + (d+ 1)aj ∈ S.

Lemma
For any nonzero integers c1, c2, . . . , cm, and any distinct indices {i1, i2, . . . , im}, we
have ∑

k

ckaik ∈ S.

Proof. By induction on m, with base case m ≤ 2 already done.
For the inductive step, we will assume that i1 = 1, i2 = 2, et cetera, for notational

convenience. The proof is then split into two cases.
First Case: some ci is even. WLOG c1 6= 0 is even and note that

x :=
1

2
c1a1 +

∑
k≥3

ckak ∈ S

y := −1

2
c1a1 − c2a2 ∈ S

4

http://web.evanchen.cc
https://aops.com/community/p17440


USAMO 2004 Solution Notes web.evanchen.cc, updated 25 July 2024

x+ y = −c2a2 +
∑
k≥3

ckak ∈ S

=⇒ x− y =
∑
k≥1

ckak ∈ S.

Second Case: all ci are odd. We reduce this to the first case as follows. Let u = a1
gcd(a1,a2)

and v = a2
gcd(a1,a2) . Then gcd(u, v) = 1 and so WLOG u is odd. Then

c1a1 + c2a2 = (c1 + v)a1 + (c2 − u)a2

and so we can replace our given combination by (c1+v)a1+(c2−u)a2+ c3a3+ . . . which
now has an even coefficient for a2.

We then apply the lemma at m = n; this implies the result since Bezout’s lemma
implies that

∑
ciai = 1 for some choice of ci ∈ Z.
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§1.3 USAMO 2004/3, proposed by Ricky Liu
Available online at https://aops.com/community/p17441.

Problem statement

For what real values of k > 0 is it possible to dissect a 1 × k rectangle into two
similar but noncongruent polygons?

Answer: the dissection is possible for every k > 0 except for k = 1.
Construction. By symmetry it suffices to give a construction for k > 1 (since

otherwise we replace k by k−1). For every integer n ≥ 2 and real number r > 1, we define
a shape R(n, r) as follows.

• We start with a rectangle of width 1 and height r. To its left, we glue a rectangle
of height r and width r2 to its left.

• Then, we glue a rectangle of width 1 + r2 and height r3 below our figure, followed
by a rectangle of height r + r3 and width r4 to the left of our figure.

• Next, we glue a rectangle of width 1 + r2 + r4 and height r5 below our figure,
followed by a rectangle of height r + r3 + r5 and width r6 to the left of our figure.

. . .and so on, up until we have put 2n rectangles together. The picture R(3, r) is shown
below as an example.

1r2r4r6

r1

r3

r5

Observe that by construction, the entire shape R(n, r) is a rectangle which consists of two
similar “staircase” polygons (which are not congruent, since r > 1). Note that R(n, r) is
similar to a 1× fn(r) rectangle where fn(r) is the aspect ratio of R(n, r), defined by

fn(r) =
1 + r2 + · · ·+ r2n

r + r3 + · · ·+ r2n−1
= r +

1

r + r3 + · · ·+ r2n−1
.

We claim that this is enough. Indeed for each fixed n, note that

lim
r→1+

fn(r) = 1 +
1

n
and lim

r→∞
fn(r) = ∞.

Since fn is continuous, it achieves all values greater than 1+ 1
n . Thus by taking sufficiently

large n (such that k > 1 + 1
n), we obtain a valid construction for any k > 1.

Proof of impossibility for a square. Now we show that k = 1 is impossible (the
tricky part!). Suppose we have a squared dissected into two similar polygons P ∼ Q. Let
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Γ be their common boundary. By counting the number of sides of P and Q we see Γ
must run from one side of the square to an opposite side (possibly ending at a corner of
the square). We orient the figure so Γ runs from north to south, with P to the west and
Q to the east.

Γ

P Q

Let s be the longest length of a segment in Γ.

Claim — The longest side length of P is max(s, 1). Similarly, the longest side
length of Q is max(s, 1) as well.

Proof. The only edges of P not in Γ are the west edge of our original square, which has
length 1, and the north/south edges of P (if any), which have length at most 1. An
identical argument works for Q.

It follows the longest sides of P and Q have the same length! Hence the two polygons
are in fact congruent, ending the proof.
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§2 Solutions to Day 2
§2.1 USAMO 2004/4, proposed by Melanie Wood
Available online at https://aops.com/community/p17438.

Problem statement

Alice and Bob play a game on a 6 by 6 grid. On his turn, a player chooses a rational
number not yet appearing in the grid and writes it in an empty square of the grid.
Alice goes first and then the players alternate. When all squares have numbers
written in them, in each row, the square with the greatest number in that row is
colored black. Alice wins if he can then draw a line from the top of the grid to the
bottom of the grid that stays in black squares, and Bob wins if he can’t. (If two
squares share a vertex, Alice can draw a line from one to the other that stays in
those two squares.) Find, with proof, a winning strategy for one of the players.

Bob can win. Label the first two rows as follows:[
a b c d e f
d′ e′ f ′ a′ b′ c′

]
These twelve boxes thus come in six pairs, (a, a′), (b, b′) and so on.

Claim — Bob can ensure that the order relation of the labels is the same between
the two rows, meaning that a < b if and only if a′ < b′, and so on.

Proof. If Alice plays q in some box in the first two rows, then Bob can plays q + ε in the
corresponding box in the same pair, for some sufficiently small ε (in terms of the existing
numbers).

When Alice writes a number in any other row, Bob writes anywhere in rows 3 to 6.

Under this strategy the black squares in the first two rows will be a pair and therefore
will not touch, so Bob wins.
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§2.2 USAMO 2004/5, proposed by Titu Andreescu
Available online at https://aops.com/community/p17397.

Problem statement

Let a, b, c be positive reals. Prove that

(a5 − a2 + 3)(b5 − b2 + 3)(c5 − c2 + 3) ≥ (a+ b+ c)3 .

Observe that for all real numbers a, the inequality

a5 − a2 + 3 ≥ a3 + 2

holds. Then the problem follows by Hölder in the form

(a3 + 1 + 1)(1 + b3 + 1)(1 + 1 + c3) ≥ (a+ b+ c)3.
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§2.3 USAMO 2004/6, proposed by Zuming Feng
Available online at https://aops.com/community/p17437.

Problem statement

A circle ω is inscribed in a quadrilateral ABCD. Let I be the center of ω. Suppose
that

(AI +DI)2 + (BI + CI)2 = (AB + CD)2.

Prove that ABCD is an isosceles trapezoid.

Here’s a completely algebraic solution. WLOG ω has radius 1, and let a, b, c, d be the
lengths of the tangents from A, B, C, D to ω. It is known that

a+ b+ c+ d = abc+ bcd+ cda+ dab (?)

which can be proved by, say tan-addition formula. Then, the content of the problem is
to show that

(
√
a2 + 1 +

√
d2 + 1)2 + (

√
b2 + 1 +

√
c2 + 1)2 ≤ (a+ b+ c+ d)2

subject to (?), with equality only when a = d = 1
b = 1

c .
Let S = ab+ bc+ cd+ da+ ac+ bd. Then the inequality is√

(a2 + 1)(d2 + 1) +
√

(b2 + 1)(c2 + 1) ≤ S − 2.

Now, by USAMO 2014 Problem 1 and the condition (?), we have that (a2 + 1)(b2 +
1)(c2 + 1)(d2 + 1) = (S − abcd− 1)2. So squaring both sides, the inequality becomes

(ad)2 + (bc)2 + a2 + b2 + c2 + d2 ≤ S2 − 6S + 2abcd+ 4.

To simplify this, we use the identities

S2 = 6abcd+
∑
sym

a2bc+
1

4

∑
sym

a2b2

(a+ b+ c+ d)2 = (abc+ bcd+ cda+ dab)(a+ b+ c+ d)

= 4abcd+
1

2

∑
sym

a2bc

So S2 + 2abcd = 1
4

∑
sym a2b2 + 2(a2 + b2 + c2 + d2) + 4S and the inequality we want to

prove reduces to

2S ≤ (ab)2 + (ac)2 + (bd)2 + (cd)2 + 4 + a2 + b2 + c2 + d2.

This follows by AM-GM since

(ab)2 + 1 ≥ 2ab

(ac)2 + 1 ≥ 2ac

(bd)2 + 1 ≥ 2bd

(cd)2 + 1 ≥ 2cd

a2 + d2 ≥ 2ad

b2 + c2 ≥ 2bc.

The equality case is when ab = ac = bd = cd = 1, a = d, b = c, as needed to imply an
isosceles trapezoid.
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Remark. Note that a priori one expects an inequality. Indeed,

• Quadrilaterals with incircles have four degrees of freedom.

• There is one condition imposed.

• Isosceles trapezoid with incircles have two degrees of freedom.
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