
USAMO 2003 Solution Notes
Evan Chen《陳誼廷》

11 December 2023

This is a compilation of solutions for the 2003 USAMO. Some of the
solutions are my own work, but many are from the official solutions provided
by the organizers (for which they hold any copyrights), and others were found
by users on the Art of Problem Solving forums.

These notes will tend to be a bit more advanced and terse than the “official”
solutions from the organizers. In particular, if a theorem or technique is not
known to beginners but is still considered “standard”, then I often prefer to
use this theory anyways, rather than try to work around or conceal it. For
example, in geometry problems I typically use directed angles without further
comment, rather than awkwardly work around configuration issues. Similarly,
sentences like “let R denote the set of real numbers” are typically omitted
entirely.

Corrections and comments are welcome!
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§0 Problems
1. Prove that for every positive integer n there exists an n-digit number divisible by

5n all of whose digits are odd.

2. A convex polygon P in the plane is dissected into smaller convex polygons by
drawing all of its diagonals. The lengths of all sides and all diagonals of the polygon
P are rational numbers. Prove that the lengths of all sides of all polygons in the
dissection are also rational numbers.

3. Let n be a positive integer. For every sequence of integers

A = (a0, a1, a2, . . . , an)

satisfying 0 ≤ ai ≤ i, for i = 0, . . . , n, we define another sequence

t(A) = (t(a0), t(a1), t(a2), . . . , t(an))

by setting t(ai) to be the number of terms in the sequence A that precede the term
ai and are different from ai. Show that, starting from any sequence A as above,
fewer than n applications of the transformation t lead to a sequence B such that
t(B) = B.

4. Let ABC be a triangle. A circle passing through A and B intersects segments AC
and BC at D and E, respectively. Lines AB and DE intersect at F , while lines BD
and CF intersect at M . Prove that MF = MC if and only if MB ·MD = MC2.

5. Let a, b, c be positive real numbers. Prove that

(2a+ b+ c)2

2a2 + (b+ c)2
+

(2b+ c+ a)2

2b2 + (c+ a)2
+

(2c+ a+ b)2

2c2 + (a+ b)2
≤ 8.

6. At the vertices of a regular hexagon are written six nonnegative integers whose sum
is 20032003. Bert is allowed to make moves of the following form: he may pick a
vertex and replace the number written there by the absolute value of the difference
between the numbers written at the two neighboring vertices. Prove that Bert can
make a sequence of moves, after which the number 0 appears at all six vertices.
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§1 Solutions to Day 1
§1.1 USAMO 2003/1, proposed by Titu Andreescu
Available online at https://aops.com/community/p336189.

Problem statement

Prove that for every positive integer n there exists an n-digit number divisible by 5n

all of whose digits are odd.

This is immediate by induction on n. For n = 1 we take 5; moving forward if M is a
working n-digit number then exactly one of

N1 = 10n +M

N3 = 3 · 10n +M

N5 = 5 · 10n +M

N7 = 7 · 10n +M

N9 = 9 · 10n +M

is divisible by 5n+1; as they are all divisible by 5n and Nk/5
n are all distinct.
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§1.2 USAMO 2003/2
Available online at https://aops.com/community/p336193.

Problem statement

A convex polygon P in the plane is dissected into smaller convex polygons by drawing
all of its diagonals. The lengths of all sides and all diagonals of the polygon P are
rational numbers. Prove that the lengths of all sides of all polygons in the dissection
are also rational numbers.

Suppose AB is a side of a polygon in the dissection, lying on diagonal XY , with X, A,
B, Y in that order. Then

AB = XY −XA− Y B.

In this way, we see that it actually just suffices to prove the result for a quadrilateral.
We present two approaches to this end.

¶ First approach (trig). Consider quadrilateral ABCD. There are twelve angles one
can obtain using three of its four vertices, three at each vertex; denote this set of 12
angles by S Note that:

• The law of cosines implies cos θ ∈ Q for each θ ∈ S.

• Hence, (sin θ)2 ∈ Q for θ ∈ S. (This is because sin θ2 + cos2 θ.)

We say two angles θ1 and θ2 are equivalent if sin θ1
sin θ2

This is the same as saying, when sin θ1
and sin θ2 are written in simplest radical form, the part under the square root is the
same.

Now we contend:

Claim — The angles ∠BAC, ∠CAD, ∠BAD are equivalent.

Proof. Note that

Q 3 cos(∠BAD) = cos∠BAC cos∠CAD − sin∠BAC sin∠CAD

so ∠BAC and ∠CAD are equivalent. Then

sin(∠BAD) = sin∠BAC cos∠CAD + cos∠BAC sin∠CAD

implies ∠BAD is equivalent to those two.

Claim — The angles ∠BAD, ∠DBA, ∠ADB are equivalent.

Proof. Law of sines on 4BAD.

Iterating the argument implies that all angles are equivalent.
Now, if AB and CD meet at E, the law of sines on 4AEB, etc. implies the result.
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¶ Second approach (barycentric coordinates). To do this, we apply barycentric
coordinates. Consider quadrilateral ABDC (note the changed order of vertices), with
A = (1, 0, 0), B = (0, 1, 0), C = (0, 0, 1). Let D = (x, y, z), with x + y + z = 1. By
hypothesis, each of the numbers

−a2yz + b2(1− x)z + c2(1− x)y = AD2

a2(1− y)z + b2zx+ c2(1− y)x = BD2

−a2(1− z)y − b2(1− z)x+ c2xy = CD2

is rational. Let W = a2yz + b2zx+ c2xy. Then,

b2z + c2y = AD2 +W

a2z + c2x = BD2 +W

a2y + b2x = CD2 +W.

This implies that AD2+BD2+2W−c2 = 2SCz and cyclically (as usual 2SC = a2+b2−c2).
If any of SA, SB, SC are zero, then we deduce W is rational. Otherwise, we have that

1 = x+ y + z =
∑
cyc

AD2 +BD2 + 2W − c2

2SC

which implies that W is rational, because it appears with coefficient 1
SA

+ 1
SB

+ 1
SC

6= 0
(since SBC + SCA + SAB is actually the area of ABC).

Hence from the rationality of W , we deduce that x is rational as long as SA 6= 0, and
similarly for the others. So at most one of x, y, z is irrational, but since x+ y + z = 1
this implies they are all rational.

Finally, if P = AD ∩ BC then AP = 1
y+zAD, so AP is rational too, completing the

proof.

Remark. After the reduction to quadrilateral, a third alternate approach goes by quoting
Putnam 2018 A6, reproduced below:

Four points are given in the plane, with no three collinear, such that the squares
of the

(
4
2

)
= 6 pairwise distances are all rational. Show that the ratio of the

areas between any two of the
(
4
3

)
= 4 triangles determined by these points is

also rational.

If ABCD is the quadrilateral, the heights from C and D to AB have rational ratio. Letting
P = AC ∩BD, we see AP/AB can be shown as rational via coordinates, as needed.
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§1.3 USAMO 2003/3
Available online at https://aops.com/community/p336202.

Problem statement

Let n be a positive integer. For every sequence of integers

A = (a0, a1, a2, . . . , an)

satisfying 0 ≤ ai ≤ i, for i = 0, . . . , n, we define another sequence

t(A) = (t(a0), t(a1), t(a2), . . . , t(an))

by setting t(ai) to be the number of terms in the sequence A that precede the term
ai and are different from ai. Show that, starting from any sequence A as above,
fewer than n applications of the transformation t lead to a sequence B such that
t(B) = B.

We go by strong induction on n with the base cases n = 1 and n = 2 done by hand.
Consider two cases:

• If a0 = 0 and a1 = 1, then 1 ≤ t(ai) ≤ i for i ≥ 1; now apply induction to

(t(a1)− 1, t(a2)− 1, . . . , t(an)− 1) .

• Otherwise, assume that a0 = a1 = · · · = ak−1 = 0 but ak 6= 0, where k ≥ 2. Assume
k < n or it’s obvious. Then t(ai) 6= 0 for i ≥ k, thus t(t(ai)) ≥ k for i ≥ k, and we
can apply induction hypothesis to

(t(t(ak))− k, . . . , t(t(an))− k) .
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§2 Solutions to Day 2
§2.1 USAMO 2003/4, proposed by Titu Andreescu, Zuming Feng
Available online at https://aops.com/community/p336205.

Problem statement

Let ABC be a triangle. A circle passing through A and B intersects segments AC
and BC at D and E, respectively. Lines AB and DE intersect at F , while lines BD
and CF intersect at M . Prove that MF = MC if and only if MB ·MD = MC2.

Ceva theorem plus the similar triangles.

CD

M

F

B

E

A

We know unconditionally that

]CBD = ]EBD = ]EAD = ]EAC.

Moreover, by Ceva’s theorem on 4BCF , we have MF = MC ⇐⇒ FC ‖ AE. So we
have the equivalences

MF = MC ⇐⇒ FC ‖ AE

⇐⇒ ]FCA = ]EAC

⇐⇒ ]MCD = ]CBD

⇐⇒ MC2 = MB ·MD.
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§2.2 USAMO 2003/5, proposed by Zuming Feng, Titu Andreescu
Available online at https://aops.com/community/p336208.

Problem statement

Let a, b, c be positive real numbers. Prove that

(2a+ b+ c)2

2a2 + (b+ c)2
+

(2b+ c+ a)2

2b2 + (c+ a)2
+

(2c+ a+ b)2

2c2 + (a+ b)2
≤ 8.

This is a canonical example of tangent line trick. Homogenize so that a+ b+ c = 3. The
desired inequality reads ∑

cyc

(a+ 3)2

2a2 + (3− a)2
≤ 8.

This follows from
f(x) =

(x+ 3)2

2x2 + (3− x)2
≤ 1

3
(4x+ 4)

which can be checked as 1
3(4x+ 4)(2x2 + (3− x)2)− (x+ 3)2 = (x− 1)2(4x+ 3) ≥ 0.
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§2.3 USAMO 2003/6
Available online at https://aops.com/community/p336210.

Problem statement

At the vertices of a regular hexagon are written six nonnegative integers whose sum
is 20032003. Bert is allowed to make moves of the following form: he may pick a
vertex and replace the number written there by the absolute value of the difference
between the numbers written at the two neighboring vertices. Prove that Bert can
make a sequence of moves, after which the number 0 appears at all six vertices.

If a ≤ b ≤ c are odd integers, the configuration which has (a, b−a, b, c− b, c, c−a) around
the hexagon in some order (up to cyclic permutation and reflection) is said to be great
(picture below).

Claim — We can reach a great configuration from any configuration with odd sum.

Proof. We should be able to find an equilateral triangle whose vertices have odd sum.
If all three vertices are odd, then we are already done. Otherwise, operate as in the
following picture (modulo 2).

1

∗

0

∗

0

∗

1

1

0

0

0

1

1

1

1

0

1

1

1

0

1

0

1

0

Thus we arrived at a great configuration.

Claim — Bert’s goal is possible for all great configurations.

Proof, suggested by Haoran Chen. If a = b = c then we have (t, 0, t, 0, t, 0) which is
obviously winnable.

Otherwise, we can perform the following three operations shown in the figure below,
which yield a great configuration whose odd entries are a, b, |c− 2a|.

a

b − a

b

c − b

c

c − a

a

b − a

b

c − b

b− a

c − a

a

b − a

b

a

b− a

c − a

a

b − a

b

a

|c− 2a|

c − a

a

b |c− 2a|
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Since |c − 2a| < c unless a = b = c, this decreases the sum. So an induction now
completes the problem.

Remark. One simple idea might be to try to overwrite the maximum number at each point,
decreasing the sum. However, this fails on the arrangement (t, t, 0, t, t, 0).

Unfortunately, this issue is actually fatal, as the problem has a hidden parity obstruction.
The configuration (1, 1, 0, 1, 1, 0) mod 2 is invariant modulo 2, and so Bert can walk into a
“fatal death-trap” of this shape long before the numbers start becoming equal/zero/etc. In
other words, you can mess up on the first move! This is why the initial sum is given to be
odd; however, it’s not possible for Bert to win so one essentially has to “tip-toe” around the
110110 trap any time one leaves the space of odd sum. That’s why the great configurations
defined above serve as an anchor, making sure we never veer too far from the safe 101010
configuration.

Remark. On the other hand, many other approaches are possible which anchor around a
different parity configuration, like 100000 for example. The choice of 101010 by me is due
to symmetry — ostensibly, if it worked, there should be fewer cases.
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