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11 December 2023

This is a compilation of solutions for the 2001 USAMO. Some of the
solutions are my own work, but many are from the official solutions provided
by the organizers (for which they hold any copyrights), and others were found
by users on the Art of Problem Solving forums.

These notes will tend to be a bit more advanced and terse than the “official”
solutions from the organizers. In particular, if a theorem or technique is not
known to beginners but is still considered “standard”, then I often prefer to
use this theory anyways, rather than try to work around or conceal it. For
example, in geometry problems I typically use directed angles without further
comment, rather than awkwardly work around configuration issues. Similarly,
sentences like “let R denote the set of real numbers” are typically omitted
entirely.

Corrections and comments are welcome!
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§0 Problems
1. Each of eight boxes contains six balls. Each ball has been colored with one of n

colors, such that no two balls in the same box are the same color, and no two colors
occur together in more than one box. Find with proof the smallest possible n.

2. Let ABC be a triangle and let ω be its incircle. Denote by D1 and E1 the points
where ω is tangent to sides BC and AC, respectively. Denote by D2 and E2 the
points on sides BC and AC, respectively, such that CD2 = BD1 and CE2 = AE1,
and denote by P the point of intersection of segments AD2 and BE2. Circle ω
intersects segment AD2 at two points, the closer of which to the vertex A is denoted
by Q. Prove that AQ = D2P .

3. Let a, b, c be nonnegative real numbers such that a2 + b2 + c2 + abc = 4. Show that

0 ≤ ab+ bc+ ca− abc ≤ 2.

4. Let ABC be a triangle and P any point such that PA, PB, PC are the sides of
an obtuse triangle, with PA the longest side. Prove that ∠BAC is acute.

5. Let S ⊆ Z be such that:
(a) there exist a, b ∈ S with gcd(a, b) = gcd(a− 2, b− 2) = 1;
(b) if x and y are elements of S (possibly equal), then x2 − y also belongs to S.

Prove that S = Z.

6. Each point in the plane is assigned a real number. Suppose that for any nonde-
generate triangle, the number at its incenter is the arithmetic mean of the three
numbers at its vertices. Prove that all points in the plane are equal to each other.
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§1 Solutions to Day 1
§1.1 USAMO 2001/1
Available online at https://aops.com/community/p337868.

Problem statement

Each of eight boxes contains six balls. Each ball has been colored with one of n
colors, such that no two balls in the same box are the same color, and no two colors
occur together in more than one box. Find with proof the smallest possible n.

The answer is n = 23. Shown below is a construction using that many colors, which we
call {1, 2, . . . , 15, a, . . . , f,X, Y }.

X X X 1 2 3 4 5
1 6 11 6 7 8 9 10
2 7 12 11 12 13 14 15
3 8 13 Y Y Y a b
4 9 14 a c e c d
5 10 15 b d f e f


We present now two proofs that n = 23 is best possible. I think the first is more motivated
— it will actually show us how we could come up with the example above.

¶ First solution (hands-on). We say a color x is overrated if it is used at least three
times. First we make the following smoothing argument.

Claim — Suppose some box contains a ball of overrated color x plus a ball of color
y used only once. Then we can change one ball of color x to color y while preserving
all the conditions.

Proof. Obvious. (Though the color x could cease to be overrated after this operation.)

By applying this operation as many times as possible, we arrive at a situation in which
whenever we have a box with an overrated color, the other colors in the box are used
twice or more.

Assume now n ≤ 23 and the assumption; we will show the equality case must of the
form we gave. Since there are a total of 48 balls, at least two colors are overrated. Let X
be an overrated color and take three boxes where it appears. Then there are 15 more
distinct colors, say {1, . . . , 15} lying in those boxes. Each of them must appear at least
once more, so we arrive at the situation

X X X 1 2 3 4 5
1 6 11 6 7 8 9 10
2 7 12 11 12 13 14 15
3 8 13
4 9 14
5 10 15


up to harmless permutation of the color names. Now, note that none of these 15 colors
can reappear. So it remains to fill up the last five boxes.

3

http://web.evanchen.cc
https://aops.com/community/p337868


USAMO 2001 Solution Notes web.evanchen.cc, updated 11 December 2023

Now, there is at least one more overrated color, distinct from any we have seen; call
it Y . In the three boxes Y appears in, there must be six new colors, and this gives the
lower bound n ≥ 1 + 15+ 1+ 6 = 23 which we sought, with equality occurring as we saw
above.

Remark (Partial progresses). The fact that
(
16
2

)
= 120 = 8

(
6
2

)
(suggesting the bound

n ≥ 16) is misleading and not that helpful.
There is a simple argument showing that n should be much larger than 16. Imagine

opening the boxes in any order. The first box must contain six new colors. The second box
must contain five new colors, and so on; thus n ≥ 6 + 5 + 4 + 3 + 2 + 1 = 21. This is sharp
for seven boxes, as the example below shows.

1 1 2 3 4 5 6
2 7 7 8 9 10 11
3 8 12 12 13 14 15
4 9 13 16 16 17 18
5 10 14 17 19 19 20
6 11 15 18 20 21 21


However, one cannot add an eight box, suggesting the answer should be a little larger than
21. One possible eight box is {1, 12, 19, a, b, c} which gives n ≤ 24; but the true answer is a
little trickier.

¶ Second solution (slick). Here is a short proof from the official solutions of the bound.
Consider the 8× 6 grid of colors as before. For each ball b, count the number of times nb

its color is used, and write the fraction 1
nb

.
On the one hand, we should have

n =
∑

all 48 balls b

1

nb
.

On the other hand, for any given box B, we have
∑

b∈B(nb − 1) ≤ 7, as among the
other seven boxes at most one color from B appears. Therefore,

∑
b∈B nb ≤ 13, and a

smoothing argument this implies∑
b∈B

1

nb
≥ 1

3
· 1 + 1

2
· 5 =

17

6
.

Thus, n ≥ 8 · 17
6 = 22.66 . . . , so n ≥ 23.
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§1.2 USAMO 2001/2
Available online at https://aops.com/community/p337870.

Problem statement

Let ABC be a triangle and let ω be its incircle. Denote by D1 and E1 the points
where ω is tangent to sides BC and AC, respectively. Denote by D2 and E2 the
points on sides BC and AC, respectively, such that CD2 = BD1 and CE2 = AE1,
and denote by P the point of intersection of segments AD2 and BE2. Circle ω
intersects segment AD2 at two points, the closer of which to the vertex A is denoted
by Q. Prove that AQ = D2P .

We have that P is the Nagel point

P = (s− a : s− b : s− c) .

Therefore,
PD2

AD2
=

s− a

(s− a) + (s− b) + (s− c)
=

s− a

s
.

Meanwhile, Q is the antipode of D1. The classical homothety at A mapping Q to D1 (by
mapping the incircle to the A-excircle) has ratio s−a

s as well (by considering the length
of the tangents from A), so we are done.
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§1.3 USAMO 2001/3, proposed by Titu Andreescu
Available online at https://aops.com/community/p96705.

Problem statement

Let a, b, c be nonnegative real numbers such that a2 + b2 + c2 + abc = 4. Show that

0 ≤ ab+ bc+ ca− abc ≤ 2.

The left-hand side of the inequality is trivial; just note that min {a, b, c} ≤ 1. Hence, we
focus on the right side. We use Lagrange Multipliers.

Define
U =

{
(a, b, c) | a, b, c > 0 and a2 + b2 + c2 < 1000

}
.

This is an intersection of open sets, so it is open. Its closure is

U =
{
(a, b, c) | a, b, c ≥ 0 and a2 + b2 + c2 ≤ 1000

}
.

Hence the constraint set
S =

{
x ∈ U : g(x) = 4

}
is compact, where g(a, b, c) = a2 + b2 + c2 + abc.

Define
f(a, b, c) = a2 + b2 + c2 + ab+ bc+ ca.

It’s equivalent to show that f ≤ 6 subject to g. Over S, it must achieve a global maximum.
Now we consider two cases.

If x lies on the boundary, that means one of the components is zero (since a2+b2+c2 =
1000 is clearly impossible). WLOG c = 0, then we wish to show a2 + b2 + ab ≤ 6 for
a2 + b2 = 4, which is trivial.

Now for the interior U , we may use the method of Lagrange Multipliers. Consider a
local maximum x ∈ U . Compute

∇f = 〈2a+ b+ c, 2b+ c+ a, 2c+ a+ b〉

and
∇g = 〈2a+ bc, 2b+ ca, 2c+ ab〉 .

Of course, ∇g 6= 0 everywhere, so introducing our multiplier yields

〈2a+ b+ c, a+ 2b+ c, a+ b+ 2c〉 = λ 〈2a+ bc, 2b+ ca, 2c+ ab〉 .

Note that λ 6= 0 since a, b, c > 0. Subtracting 2a+ b+ c = λ(2a+ bc) from a+ 2b+ c =
λ(2b+ ca) implies that

(a− b)([2λ− 1]− λc) = 0.

We can derive similar equations for the others. Hence, we have three cases.

1. If a = b = c, then a = b = c = 1, and this satisfies f(1, 1, 1) ≤ 6.

2. If a, b, c are pairwise distinct, then we derive a = b = c = 2− λ−1, contradiction.
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3. Now suppose that a = b 6= c.
Meanwhile, the constraint (with a = b) reads

a2 + b2 + c2 + abc = 4 ⇐⇒ c2 + a2c+ (2a2 − 4) = 0

⇐⇒ (c+ 2)(c− (2− a2)) = 0

which since c > 0 gives c = 2− a2.
Noah Walsh points out that at this point, we don’t need to calculate the critical
point; we just directly substitute a = b and c = 2− a2 into the desired inequality:

a2 + 2a(2− a)2 − a2(2− a)2 = 2− (a− 1)2(a2 − 4a+ 2) ≤ 0.

So any point here satisfies the inequality anyways.

Remark. It can actually be shown that the critical point in the third case we skipped is
pretty close: it is given by

a = b =
1 +

√
17

4
c =

1

8

(
7−

√
17
)
.

This satisfies

f(a, b, c) = 3a2 + 2ac+ c2 =
1

32

(
121 + 17

√
17

)
≈ 5.97165

which is just a bit less than 6.

Remark. Equality holds for the upper bound if (a, b, c) = (1, 1, 1) or (a, b, c) = (
√
2,
√
2, 0)

and permutations. The lower bound is achieved if (a, b, c) = (2, 0, 0) and permutations.

7

http://web.evanchen.cc


USAMO 2001 Solution Notes web.evanchen.cc, updated 11 December 2023

§2 Solutions to Day 2
§2.1 USAMO 2001/4
Available online at https://aops.com/community/p337872.

Problem statement

Let ABC be a triangle and P any point such that PA, PB, PC are the sides of an
obtuse triangle, with PA the longest side. Prove that ∠BAC is acute.

Using Ptolemy’s inequality and Cauchy-Schwarz,

PA ·BC ≤ PB ·AC + PC ·AB

≤
√

(PB2 + PC2)(AB2 +AC2)

<
√

PA2 · (AB2 +AC)2 = PA ·
√
AB2 +AC2

meaning BC2 < AB2 +AC2, so ∠BAC is acute.

Remark (Lokman Gökçe). Here is another approach using Euler’s quadrilateral formula.
Let M and N be midpoints of AP and BC, respectively. For the points A, B, P , C; apply
Euler’s quadrilateral formula to get

AB2 +BP 2 + PC2 + CA2 = AP 2 +BC2 + 4MN2 ≥ AP 2 +BC2.

We are given that AP 2 > BP 2 + PC2, so AB2 +AC2 > BC2, and we get ∠BAC is acute.
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§2.2 USAMO 2001/5
Available online at https://aops.com/community/p337875.

Problem statement

Let S ⊆ Z be such that:

(a) there exist a, b ∈ S with gcd(a, b) = gcd(a− 2, b− 2) = 1;

(b) if x and y are elements of S (possibly equal), then x2 − y also belongs to S.

Prove that S = Z.

Call an integer d > 0 shifty if S = S + d (meaning S is invariant under shifting by d).
First, note that if u, v ∈ S, then for any x ∈ S,

v2 − (u2 − x) = (v2 − u2) + x ∈ S.

Since we can easily check that |S| > 1 and S 6= {n,−n} we conclude there exists a shifty
integer.

We claim 1 is shifty, which implies the problem. Assume for contradiction that 1 is
not shifty. Then for GCD reasons the set of shifty integers must be dZ for some d ≥ 2.

Claim — We have S ⊆
{
x : x2 ≡ m (mod d)

}
for some fixed m.

Proof. Otherwise if we take any p, q ∈ S with distinct squares modulo d, then q2−p2 6≡ 0
(mod d) is shifty, which is impossible.

Now take a, b ∈ S as in (a). In that case we need to have

a2 ≡ b2 ≡ (a2 − a)2 ≡ (b2 − b)2 (mod d).

Passing to a prime p | d, we have the following:

• Since a2 ≡ (a2 − a)2 (mod p) or equivalently a3(a− 2) ≡ 0 (mod p), either a ≡ 0
(mod p) or a ≡ 2 (mod p).

• Similarly, either b ≡ 0 (mod p) or b ≡ 2 (mod p).

• Since a2 ≡ b2 (mod p), or a ≡ ±b (mod p), we find either a ≡ b ≡ 0 (mod p) or
a ≡ b ≡ 2 (mod p) (even if p = 2).

This is a contradiction.

Remark. The condition (a) cannot be dropped, since otherwise we may take S = {2 (mod p)}
or S = {0 (mod p)}, say.
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§2.3 USAMO 2001/6, proposed by Bjorn Poonen
Available online at https://aops.com/community/p337877.

Problem statement

Each point in the plane is assigned a real number. Suppose that for any nondegenerate
triangle, the number at its incenter is the arithmetic mean of the three numbers at
its vertices. Prove that all points in the plane are equal to each other.

First, we claim that in an isosceles trapezoid ABCD we have a + c = b + d. Indeed,
suppose WLOG that rays BA and CD meet at X. Then triangles XAC and XBD share
an incircle, proving the claim.

Now, given any two points A and B, construct regular pentagon ABCDE. We have
a+ c = b+ d = c+ e = d+ a = e+ b, so a = b = c = d = e.

10

http://web.evanchen.cc
https://aops.com/community/p337877

	Problems
	Solutions to Day 1
	USAMO 2001/1
	USAMO 2001/2
	USAMO 2001/3, proposed by Titu Andreescu

	Solutions to Day 2
	USAMO 2001/4
	USAMO 2001/5
	USAMO 2001/6, proposed by Bjorn Poonen


