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This is a compilation of solutions for the 2000 USAMO. The ideas of the
solution are a mix of my own work, the solutions provided by the competition
organizers, and solutions found by the community. However, all the writing
is maintained by me.

These notes will tend to be a bit more advanced and terse than the “official”
solutions from the organizers. In particular, if a theorem or technique is not
known to beginners but is still considered “standard”, then I often prefer to
use this theory anyways, rather than try to work around or conceal it. For
example, in geometry problems I typically use directed angles without further
comment, rather than awkwardly work around configuration issues. Similarly,
sentences like “let R denote the set of real numbers” are typically omitted
entirely.

Corrections and comments are welcome!
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§0 Problems
1. Call a real-valued function f very convex if

f(x) + f(y)

2
≥ f

(
x+ y

2

)
+ |x− y|

holds for all real numbers x and y. Prove that no very convex function exists.

2. Let S be the set of all triangles ABC for which

5

(
1

AP
+

1

BQ
+

1

CR

)
− 3

min{AP,BQ,CR}
=

6

r
,

where r is the inradius and P , Q, R are the points of tangency of the incircle with
sides AB, BC, CA respectively. Prove that all triangles in S are isosceles and
similar to one another.

3. A game of solitaire is played with R red cards, W white cards, and B blue cards. A
player plays all the cards one at a time. With each play he accumulates a penalty.
If he plays a blue card, then he is charged a penalty which is the number of white
cards still in his hand. If he plays a white card, then he is charged a penalty which
is twice the number of red cards still in his hand. If he plays a red card, then he is
charged a penalty which is three times the number of blue cards still in his hand.
Find, as a function of R, W , and B, the minimal total penalty a player can amass
and the number of ways in which this minimum can be achieved.

4. Find the smallest positive integer n such that if n squares of a 1000×1000 chessboard
are colored, then there will exist three colored squares whose centers form a right
triangle with sides parallel to the edges of the board.

5. Let A1A2A3 be a triangle, and let ω1 be a circle in its plane passing through A1

and A2. Suppose there exists circles ω2, ω3, . . . , ω7 such that for k = 2, 3, . . . , 7,
circle ωk is externally tangent to ωk−1 and passes through Ak and Ak+1 (indices
mod 3). Prove that ω7 = ω1.

6. Let a1, b1, a2, b2, . . . , an, bn be nonnegative real numbers. Prove that

n∑
i,j=1

min{aiaj , bibj} ≤
n∑

i,j=1

min{aibj , ajbi}.
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§1 Solutions to Day 1
§1.1 USAMO 2000/1
Available online at https://aops.com/community/p299244.

Problem statement

Call a real-valued function f very convex if

f(x) + f(y)

2
≥ f

(
x+ y

2

)
+ |x− y|

holds for all real numbers x and y. Prove that no very convex function exists.

For C ≥ 0, we say a function f is C-convex

f(x) + f(y)

2
≥ f

(
x+ y

2

)
+ C |x− y| .

Suppose f is C-convex. Let a < b < c < d < e be any arithmetic progression, such
that t = |e− a|. Observe that

f(a) + f(c) ≥ 2f(b) + C · 1
2
t

f(c) + f(e) ≥ 2f(d) + C · 1
2
t

f(b) + f(d) ≥ 2f(c) + C · 1
2
t

Adding the first two to twice the third gives

f(a) + f(e) ≥ 2f(c) + 2C · t.

So we conclude C-convex function is also 2C-convex. This is clearly not okay for C > 0.
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§1.2 USAMO 2000/2
Available online at https://aops.com/community/p338078.

Problem statement

Let S be the set of all triangles ABC for which

5

(
1

AP
+

1

BQ
+

1

CR

)
− 3

min{AP,BQ,CR}
=

6

r
,

where r is the inradius and P , Q, R are the points of tangency of the incircle with
sides AB, BC, CA respectively. Prove that all triangles in S are isosceles and similar
to one another.

We will prove the inequality

2

AP
+

5

BQ
+

5

CR
≥ 6

r

with equality when AP : BQ : CR = 1 : 4 : 4. This implies the problem statement.
Letting x = AP , y = BQ, z = CR, the inequality becomes

2

x
+

5

y
+

5

z
≥ 6

√
x+ y + z

xyz
.

Squaring both sides and collecting terms gives

4

x2
+

25

y2
+

25

z2
+

14

yz
≥ 16

xy
+

16

xz
.

If we replace x = 1/a, y = 4/b, z = 4/c, then it remains to prove the inequality

64a2 + 25(b+ c)2 ≥ 64a(b+ c) + 36bc

where equality holds when a = b = c. This follows by two applications of AM-GM:

16
(
4a2 + (b+ c)2

)
≥ 64a(b+ c)

9(b+ c)2 ≥ 36bc.

Again one can tell this is an inequality by counting degrees of freedom.

4

http://web.evanchen.cc
https://aops.com/community/p338078


USAMO 2000 Solution Notes web.evanchen.cc, updated 15 April 2024

§1.3 USAMO 2000/3
Available online at https://aops.com/community/p338081.

Problem statement

A game of solitaire is played with R red cards, W white cards, and B blue cards. A
player plays all the cards one at a time. With each play he accumulates a penalty.
If he plays a blue card, then he is charged a penalty which is the number of white
cards still in his hand. If he plays a white card, then he is charged a penalty which
is twice the number of red cards still in his hand. If he plays a red card, then he is
charged a penalty which is three times the number of blue cards still in his hand.

Find, as a function of R, W , and B, the minimal total penalty a player can amass
and the number of ways in which this minimum can be achieved.

The minimum penalty is

f(B,W,R) = min(BW, 2WR, 3RB)

or equivalently, the natural guess of “discard all cards of one color first” is actually
optimal (though not necessarily unique).

This can be proven directly by induction. Indeed the base case BWR = 0 (in which
case zero penalty is clearly achievable). The inductive step follows from

f(B,W,R) = min


f(B − 1,W,R) +W

f(B,W − 1, R) + 2R

f(B,W,R− 1) + 3B.

It remains to characterize the strategies. This is an annoying calculation, so we just
state the result.

• If any of the three quantities BW , 2WR, 3RB is strictly smaller than the other
three, there is one optimal strategy.

• If BW = 2WR < 3RB, there are W +1 optimal strategies, namely discarding from
0 to W white cards, then discarding all blue cards. (Each white card discarded still
preserves BW = 2WR.)

• If 2WR = 3RB < BW , there are R+1 optimal strategies, namely discarding from
0 to R red cards, and then discarding all white cards.

• If 3WR = RB < 2WR, there are B +1 optimal strategies, namely discarding from
0 to B blue cards, and then discarding all red cards.

• Now suppose BW = 2WR = 3RB. Discarding a card of one color ends up in
exactly one of the previous three cases. This gives an answer of R + W + B
strategies.
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§2 Solutions to Day 2
§2.1 USAMO 2000/4
Available online at https://aops.com/community/p338084.

Problem statement

Find the smallest positive integer n such that if n squares of a 1000×1000 chessboard
are colored, then there will exist three colored squares whose centers form a right
triangle with sides parallel to the edges of the board.

The answer is n = 1999.
For a construction with n = 1998, take a punctured L as illustrated below (with 1000

replaced by 4): 
1
1
1

1 1 1

 .

We now show that if there is no right triangle, there are at most 1998 tokens (colored
squares). In every column with more than two tokens, we have token emit a bidirectional
horizontal death ray (laser) covering its entire row: the hypothesis is that the death ray
won’t hit any other tokens.

Assume there are n tokens and that n > 1000. Then obviously some column has
more than two tokens, so at most 999 tokens don’t emit a death ray (namely, any token
in its own column). Thus there are at least n − 999 death rays. On the other hand,
we can have at most 999 death rays total (since it would not be okay for the whole
board to have death rays, as some row should have more than two tokens). Therefore,
n ≤ 999 + 999 = 1998 as desired.
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§2.2 USAMO 2000/5
Available online at https://aops.com/community/p338089.

Problem statement

Let A1A2A3 be a triangle, and let ω1 be a circle in its plane passing through A1 and
A2. Suppose there exists circles ω2, ω3, . . . , ω7 such that for k = 2, 3, . . . , 7, circle
ωk is externally tangent to ωk−1 and passes through Ak and Ak+1 (indices mod 3).
Prove that ω7 = ω1.

The idea is to keep track of the subtended arc ◊�AiAi+1 of ωi for each i. To this end, let
β = ]A1A2A3, γ = ]A2A3A1 and α = ]A1A2A3.

O1 O2

O3

A1

A2

A3

α

β

γ

Initially, we set θ = ]O1A2A1. Then we compute

]O1A2A1 = θ

]O2A3A2 = −β − θ

]O3A1A3 = β − γ + θ

]O4A2A1 = (γ − β − α)− θ

and repeating the same calculation another round gives

]O7A2A1 = k − (k − θ) = θ

with k = γ − β − α. This implies O7 = O1, so ω7 = ω1.
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§2.3 USAMO 2000/6, proposed by Gheorghita Zbaganu
Available online at https://aops.com/community/p108437.

Problem statement

Let a1, b1, a2, b2, . . . , an, bn be nonnegative real numbers. Prove that

n∑
i,j=1

min{aiaj , bibj} ≤
n∑

i,j=1

min{aibj , ajbi}.

We present two solutions.

¶ First solution by creating a single min (Vincent Huang and Ravi Boppana). Let
bi = riai for each i, and rewrite the inequality as∑

i,j

aiaj [min(ri, rj)− min(1, rirj)] ≥ 0.

We now do the key manipulation to convert the double min into a separate single min.
Let εi = +1 if ri ≥ 1, and εi = −1 otherwise, and let si = |ri − 1|. Then we pass to
absolute values:

2min(ri, rj)− 2min(1, rirj) = |rirj − 1| − |ri − rj | − (ri − 1)(rj − 1)

= |rirj − 1| − |ri − rj | − εiεjsisj

= εiεj min (|1− rirj ± (ri − rj)|)− εiεjsisj

= εiεj min (si(rj + 1), sj(ri + 1))− εiεjsisj

= (εisi)(εjsj)min
(
rj + 1

sj
− 1,

ri + 1

si
− 1

)
.

So let us denote xi = aiεisi ∈ R, and ti =
ri+1
si

− 1 ∈ R≥0. Thus it suffices to prove
that:

Claim — We have ∑
i,j

xixj min(ti, tj) ≥ 0

for arbitrary xi ∈ R, ti ∈ R≥0.

Proof. One can just check this “by hand” by assuming t1 ≤ t2 ≤ · · · ≤ tn; then the
left-hand side becomes∑

i

tix
2
i + 2

∑
i<j

2tixixj =
∑
i

(ti − ti−1)(xi + xi+1 + · · ·+ xn)
2 ≥ 0.

There is also a nice proof using the integral identity

min(ti, tj) =
∫ ∞

0
1(u ≤ ti)1(u ≤ tj) du

where the 1 are indicator functions. Indeed,∑
i,j

xixj min(ti, tj) =
∑
i,j

xixj

∫ ∞

0
1(u ≤ ti)1(u ≤ tj) du
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=

∫ ∞

0

∑
i

xi1(u ≤ ti)
∑
j

xj1(u ≤ tj) du

=

∫ ∞

0

(∑
i

xi1(u ≤ ti)

)2

du

≥ 0.

¶ Second solution by smoothing (Alex Zhai). The case n = 1 is immediate, so we’ll
proceed by induction on n ≥ 2.

Again, let bi = riai for each i, and write the inequality as

Ln(a1, . . . , an, r1, . . . , rn) :=
∑
i,j

aiaj [min(ri, rj)− min(1, rirj)] ≥ 0.

First note that if r1 = r2 then

Ln(a1, a2, a3, . . . , r1, r1, r3 . . . ) = Ln−1(a1 + a2, a3, . . . , r1, r3, . . . )

and so our goal is to smooth to a situation where two of the ri’s are equal, so that we
may apply induction.

On the other hand, Ln is a piecewise linear function in r1 ≥ 0. Let us smooth r1 then.
Note that if the minimum is attained at r1 = 0, we can ignore a1 and reduce to the
(n− 1)-variable case. On the other hand, the minimum must be achieved at a cusp which
opens upward, which can only happen if rirj = 1 for some j. (The ri = rj cusps open
downward, sadly.)

In this way, whenever some ri is not equal to the reciprocal of any other r•, we can
smooth it. This terminates; so we may smooth until we reach a situation for which

{r1, . . . , rn} = {1/r1, . . . , 1/rn}.

Now, assume WLOG that r1 = maxi ri and r2 = mini ri, hence r1r2 = 1 and r1 ≥ 1 ≥ r2.
We isolate the contributions from a1, a2, r1 and r2.

Ln(. . . ) = a21 [r1 − 1] + a22
[
r2 − r22

]
+ 2a1a2 [r2 − 1]

+ 2a1 [(a3r3 + · · ·+ anrn)− (a3 + · · ·+ an)]

+ 2a2r2 [(a3 + · · ·+ an)− (a3r3 + · · ·+ anrn)]

+

n∑
i=3

n∑
j=3

aiaj [min(ri, rj)− min(1, rirj)] .

The idea now is to smooth via

(a1, a2, r1, r2) −→
(
a1,

1

t
a2,

1

t
r1, tr2

)
where t ≥ 1 is such that 1

t r1 ≥ max(1, r3, . . . , rn) holds. (This choice is such that a1
and a2r2 are unchanged, because we don’t know the sign of

∑
i≥3(1− ri)ai and so the

post-smoothing value is still at least the max.) Then,

Ln(a1, a2, . . . , r1, r2, . . . )− Ln

(
a1,

1

t
a2, . . . ,

1

t
r1, tr2

)
= a21

(
r1 −

1

t
r1

)
+ a22

(
r2 −

1

t
r2

)
+ 2a1a2

(
1

t
− 1

)
=

(
1− 1

t

)(
r1a

2
1 + r2a

2
2 − 2a1a2

)
≥ 0

the last line by AM-GM. Now pick t = r1
max(1,r3,...,rn) , and at last we can induct down.
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