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This is a compilation of solutions for the 1999 USAMO. Some of the
solutions are my own work, but many are from the official solutions provided
by the organizers (for which they hold any copyrights), and others were found
by users on the Art of Problem Solving forums.

These notes will tend to be a bit more advanced and terse than the “official”
solutions from the organizers. In particular, if a theorem or technique is not
known to beginners but is still considered “standard”, then I often prefer to
use this theory anyways, rather than try to work around or conceal it. For
example, in geometry problems I typically use directed angles without further
comment, rather than awkwardly work around configuration issues. Similarly,
sentences like “let R denote the set of real numbers” are typically omitted
entirely.

Corrections and comments are welcome!
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§0 Problems
1. Some checkers placed on an n× n checkerboard satisfy the following conditions:

(a) every square that does not contain a checker shares a side with one that does;
(b) given any pair of squares that contain checkers, there is a sequence of squares

containing checkers, starting and ending with the given squares, such that
every two consecutive squares of the sequence share a side.

Prove that at least (n2 − 2)/3 checkers have been placed on the board.

2. Let ABCD be a convex cyclic quadrilateral. Prove that

|AB − CD|+ |AD −BC| ≥ 2|AC −BD|.

3. Let p > 2 be a prime and let a, b, c, d be integers not divisible by p, such that{
ra

p

}
+

{
rb

p

}
+

{
rc

p

}
+

{
rd

p

}
= 2

for any integer r not divisible by p. (Here, {t} = t − btc is the fractional part.)
Prove that at least two of the numbers a+ b, a+ c, a+ d, b+ c, b+ d, c+ d are
divisible by p.

4. Let a1, a2, . . . , an be a sequence of n > 3 real numbers such that

a1 + · · ·+ an ≥ n and a21 + · · ·+ a2n ≥ n2.

Prove that max(a1, . . . , an) ≥ 2.

5. The Y2K Game is played on a 1× 2000 grid as follows. Two players in turn write
either an S or an O in an empty square. The first player who produces three
consecutive boxes that spell SOS wins. If all boxes are filled without producing
SOS then the game is a draw. Prove that the second player has a winning strategy.

6. Let ABCD be an isosceles trapezoid with AB ‖ CD. The inscribed circle ω of
triangle BCD meets CD at E. Let F be a point on the (internal) angle bisector of
∠DAC such that EF ⊥ CD. Let the circumscribed circle of triangle ACF meet
line CD at C and G. Prove that the triangle AFG is isosceles.
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§1 Solutions to Day 1
§1.1 USAMO 1999/1
Available online at https://aops.com/community/p340035.

Problem statement

Some checkers placed on an n× n checkerboard satisfy the following conditions:

(a) every square that does not contain a checker shares a side with one that does;

(b) given any pair of squares that contain checkers, there is a sequence of squares
containing checkers, starting and ending with the given squares, such that
every two consecutive squares of the sequence share a side.

Prove that at least (n2 − 2)/3 checkers have been placed on the board.

Take a spanning tree on the set V of checkers where the |V | − 1 edges of the tree are
given by orthogonal adjacency. By condition (a) we have∑

v∈V
(4− deg v) ≥ n2 − |V |

and since
∑

v∈V deg v = 2(|V | − 1) we get

4|V | − (2|V | − 2) ≥ n2 − |V |

which implies |V | ≥ n2−2
3 .
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§1.2 USAMO 1999/2
Available online at https://aops.com/community/p340036.

Problem statement

Let ABCD be a convex cyclic quadrilateral. Prove that

|AB − CD|+ |AD −BC| ≥ 2|AC −BD|.

Let the diagonals meet at P , and let AP = pq, DP = pr, BP = qs, CP = rs. Then set
AB = qx, CD = rx, AD = py, BC = sy.

In this way we compute

|AC −BD| = |(p− s)(q − r)|

and
|AB − CD| = |q − r|x.

By triangle inequality on 4AXB, we have x ≥ |p− s|. So |AB − CD| ≥ |AC −BD|.
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§1.3 USAMO 1999/3
Available online at https://aops.com/community/p340038.

Problem statement

Let p > 2 be a prime and let a, b, c, d be integers not divisible by p, such that{
ra

p

}
+

{
rb

p

}
+

{
rc

p

}
+

{
rd

p

}
= 2

for any integer r not divisible by p. (Here, {t} = t−btc is the fractional part.) Prove
that at least two of the numbers a+ b, a+ c, a+ d, b+ c, b+ d, c+ d are divisible
by p.

First of all, we apparently have r(a + b + c + d) ≡ 0 (mod p) for every prime p, so it
automatically follows that a+ b+ c+ d ≡ 0 (mod p). By scaling appropriately, and also
replacing each number with its remainder modulo p, we are going to assume that

1 = a ≤ b ≤ c ≤ d < p.

We are going to prove that d = p− 1, which will solve the problem.

Claim — For each integer r = 1, 2, . . . , p− 1 we have

2(r − 1) =

⌊
rb

p

⌋
+

⌊
rc

p

⌋
+

⌊
rd

p

⌋
.

Proof. By plugging in r = 1 to the given we have a+ b+ c+ d = 2p. Now, we have

2 =
∑
cyc

(
ra

p
−
⌊
ra

p

⌋)
and since a+ b+ c+ d = 2p the conclusion follows.

We vaguely outline the approach now, before giving a formalization. Imagine the
interval [0, 1]. One by one, for each r = 1, 2, 3, . . . , p − 1, we mark the fractions with
denominator r on this number line; the resulting pictures may be better known as Farey
fractions. At each step, we can place the three numbers b/p, c/p, d/p into one of the
resulting sub-intervals. Our goal is to show that d/p is always in the rightmost interval,
while b/p and c/p are always to the right of symmetrically mirrored points. An example
of a possible diagram is shown below (not to scale).
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In symbols, it will be enough to prove the following.
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Claim — For each r = 1, 2, . . . , p− 2 we have r−1
r < d

p < 1.

Equivalently, for each r = 1, 2, . . . , p− 2 we have
⌊
rb
p

⌋
+

⌊
rc
p

⌋
= r − 1.

Proof. Assume this is not true and take the minimal counterexample r > 1. Then
evidently

r − 1 >

⌊
rd

p

⌋
≥

⌊
(r − 1)d

p

⌋
= r − 2.

Now, we have that

2(r − 1) =

⌊
rb

p

⌋
+

⌊
rc

p

⌋
+

⌊
rd

p

⌋
︸ ︷︷ ︸
=r−2

.

Thus
⌊
rb
p

⌋
>

⌊
(r−1)b

p

⌋
, and

⌊
rc
p

⌋
>

⌊
(r−1)b

p

⌋
. An example of this situation is illustrated

below with r = 7 (not to scale).
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Right now, b
p and c

p are just to the right of u
r and v

r for some u and v with u + v = r.
The issue is that the there is some fraction just to the right of b

p and c
p from an earlier

value of r, and by hypothesis its denominator is going to be strictly greater than 1.
It is at this point we are going to use the properties of Farey sequences. When we

consider the fractions with denominator r+1, they are going to lie outside of the interval
they we have constrained b

p and c
p to lie in.

Indeed, our minimality assumption on r guarantees that there is no fraction with
denominator less than r between u

r and b
p . So if u

r < b
p < s

t (where u
r and s

t are the closest
fractions with denominator at most r to b

p) then Farey theory says the next fraction
inside the interval [ur ,

s
t ] is u+s

r+t , and since t > 1, we have r + t > r + 1. In other words,
we get an inequality of the form

u

r
<

b

p
< something︸ ︷︷ ︸

=s/t

≤ u+ 1

r + 1
.

The same holds for c
p as

v

r
<

c

p
< something ≤ v + 1

r + 1
.

Finally,
d

p
<

r − 1

r
<

r

r + 1
.

So now we have that⌊
(r + 1)b

p

⌋
+

⌊
(r + 1)c

p

⌋
+

⌊
(r + 1)d

p

⌋
≤ u+ v + (r − 1) = 2r − 1

which is a contradiction.
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Now, since
p− 3

p− 2
<

d

p
=⇒ d >

p(p− 3)

p− 2
= p− 1− 2

p− 2

which for p > 2 gives d = p− 1.
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§2 Solutions to Day 2
§2.1 USAMO 1999/4
Available online at https://aops.com/community/p63591.

Problem statement

Let a1, a2, . . . , an be a sequence of n > 3 real numbers such that

a1 + · · ·+ an ≥ n and a21 + · · ·+ a2n ≥ n2.

Prove that max(a1, . . . , an) ≥ 2.

Proceed by contradiction, assuming ai < 2 for all i.
If all ai ≥ 0, then n2 ≤

∑
i a

2
i < n · 22, contradiction.

Otherwise, assume at least one ai is negative. Note that if −x and −y are both present
in the sequence (x, y > 0), then we can replace them with −(x+ y) and 0. So we may
assume that there is exactly one negative term, say an = −M .

Now, smooth all the nonnegative ai to be 2, making all inequalities strict. Now, we
have that

2(n− 1)−M > n

4(n− 1) +M2 > n2.

This gives n− 2 < M < n− 2, contradiction.
Equality in the original occurs when n− 1 of the ai are equal to 2 and the last one is

equal to −(n− 2).
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§2.2 USAMO 1999/5
Available online at https://aops.com/community/p340040.

Problem statement

The Y2K Game is played on a 1× 2000 grid as follows. Two players in turn write
either an S or an O in an empty square. The first player who produces three
consecutive boxes that spell SOS wins. If all boxes are filled without producing SOS
then the game is a draw. Prove that the second player has a winning strategy.

The main insight is that a construct of the form

S � � S

(here the � is blank) will kill any player which plays inside it. We call this a trap
accordingly.

Claim — The second player can force a trap to exist; in this case the game will
never end in a draw.

Proof. Actually the second player can construct a trap on her second turn by playing an
S far enough away from the edges of the board and the first player’s initial move.

Claim — The second player always has a move which prevents her from losing.

Proof. Since there are an odd number of empty squares at the start of the second player’s
turn, there must be a square which is bordered by either two filled or two empty squares.
The second player can then play O in this square, which is always safe.

Together these two claims finish the problem.

Remark. Actually, one can show that the “only” way to lose is to be forced to play inside
a trap. Indeed, suppose playing in a certain cell c loses. If we wrote O, that means c is
bordered by exactly one S, with a blank cell on the neighbor. But we could also write S;
checking cases we find c is part of a trap.

Thus a player can lose only if all blank cells are in traps; ergo, the number of blank cells
is even. This never happens for the second player. Thus this gives an alternative solution,
and moreover a reason to believe that all correct solutions must involve traps.

A similar proof shows that for large n, with a 1× n board, the first player has a winning
strategy for odd n, and the second player has a winning strategy for even n.
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§2.3 USAMO 1999/6
Available online at https://aops.com/community/p340041.

Problem statement

Let ABCD be an isosceles trapezoid with AB ‖ CD. The inscribed circle ω of
triangle BCD meets CD at E. Let F be a point on the (internal) angle bisector
of ∠DAC such that EF ⊥ CD. Let the circumscribed circle of triangle ACF meet
line CD at C and G. Prove that the triangle AFG is isosceles.

Note E is contact point of A-excircle of 4ACD, so F is A-excenter. Hence CF is external
angle bisector of ∠ACG which implies FA = FG (since F is the arc midpoint on the
circumcircle of AFG).
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