
USAMO 1997 Solution Notes
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This is an compilation of solutions for the 1997 USAMO. Some of the
solutions are my own work, but many are from the official solutions provided
by the organizers (for which they hold any copyrights), and others were found
on the Art of Problem Solving forums.

Corrections and comments are welcome!

Contents

0 Problems 2

1 USAMO 1997/1 3

2 USAMO 1997/2 4

3 USAMO 1997/3 5

4 USAMO 1997/4 7

5 USAMO 1997/5 8

6 USAMO 1997/6 9

1



USAMO 1997 Solution Notes web.evanchen.cc, updated June 18, 2021

§0 Problems

1. Let p1, p2, p3, . . . be the prime numbers listed in increasing order, and let 0 < x0 < 1
be a real number between 0 and 1. For each positive integer k, define

xk =


0 if xk−1 = 0,{

pk
xk−1

}
if xk−1 6= 0,

where {x} denotes the fractional part of x. Find, with proof, all x0 satisfying
0 < x0 < 1 for which the sequence x0, x1, x2, . . . eventually becomes 0.

2. Let ABC be a triangle. Take points D, E, F on the perpendicular bisectors of BC,
CA, AB respectively. Show that the lines through A, B, C perpendicular to EF ,
FD, DE respectively are concurrent.

3. Prove that for any integer n, there exists a unique polynomial Q with coefficients
in {0, 1, . . . , 9} such that Q(−2) = Q(−5) = n.

4. To clip a convex n-gon means to choose a pair of consecutive sides AB, BC and to
replace them by the three segments AM , MN , and NC, where M is the midpoint
of AB and N is the midpoint of BC. In other words, one cuts off the triangle
MBN to obtain a convex (n + 1)-gon. A regular hexagon P6 of area 1 is clipped
to obtain a heptagon P7. Then P7 is clipped (in one of the seven possible ways) to
obtain an octagon P8, and so on. Prove that no matter how the clippings are done,
the area of Pn is greater than 1

3 , for all n ≥ 6.

5. If a, b, c > 0 prove that

1

a3 + b3 + abc
+

1

b3 + c3 + abc
+

1

c3 + a3 + abc
≤ 1

abc
.

6. Suppose the sequence of nonnegative integers a1, a2, . . . , a1997 satisfies

ai + aj ≤ ai+j ≤ ai + aj + 1

for all i, j ≥ 1 with i + j ≤ 1997. Show that there exists a real number x such that
an = bnxc for all 1 ≤ n ≤ 1997.
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§1 USAMO 1997/1

Let p1, p2, p3, . . . be the prime numbers listed in increasing order, and let 0 < x0 < 1 be a real
number between 0 and 1. For each positive integer k, define

xk =


0 if xk−1 = 0,{

pk
xk−1

}
if xk−1 6= 0,

where {x} denotes the fractional part of x. Find, with proof, all x0 satisfying 0 < x0 < 1 for

which the sequence x0, x1, x2, . . . eventually becomes 0.

The answer is x0 rational.
If x0 is irrational, then all xi are irrational by induction. So the sequence cannot

become zero.
If x0 is rational, then all are. Now one simply observes that the denominators of xn

are strictly decreasing, until we reach 0 = 0
1 . This concludes the proof.

Remark. The sequence pk could have been any sequence of integers.
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§2 USAMO 1997/2

Let ABC be a triangle. Take points D, E, F on the perpendicular bisectors of BC, CA, AB

respectively. Show that the lines through A, B, C perpendicular to EF , FD, DE respectively

are concurrent.

The three lines are the radical axii of the three circles centered at D, E, F , so they
concur.
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§3 USAMO 1997/3

Prove that for any integer n, there exists a unique polynomial Q with coefficients in {0, 1, . . . , 9}
such that Q(−2) = Q(−5) = n.

If we let
Q(x) =

∑
k≥0

akx
k

then ak is uniquely determined by n (mod 2k) and n (mod 5k). Indeed, we can extract
the coefficients of Q exactly by the following algorithm:

• Define b0 = c0 = n.

• For i ≥ 0, let ai be the unique digit satisfying ai ≡ bi (mod 2), ai ≡ ci (mod 5).
Then, define

bi+1 =
bi − ai
−2

, ci+1 =
ci − ai
−5

.

The proof is automatic by Chinese remainder theorem, so this shows uniqueness already.
The tricky part is to show that all ai are eventually zero (i.e. the “existence” step is
nontrivial because a polynomial may only have finitely many nonzero terms).

In fact, we will prove the following claim:

Claim — Suppose b0 and c0 are any integers such that

b0 ≡ c0 (mod 3).

Then defining bi and ci as above, we have bi ≡ ci (mod 3) for all i, and bN = cN = 0
for large enough N .

Proof. Dropping the subscripts for ease of notation, we are looking at the map

(b, c) 7→
(
b− a

−2
,
c− a

−5

)
for some 0 ≤ a ≤ 9 (a function in b and c).

The b ≡ c (mod 3) is clearly preserved. Also, examining the size,

• If |c| > 2, we have
∣∣∣ c−a−5 ∣∣∣ ≤ |c|+9

5 < |c|. Thus, we eventually reach a pair with

|c| ≤ 2.

• Similarly, if |b| > 9, we have
∣∣∣ b−a−2 ∣∣∣ ≤ |b|+9

2 < |b|, so we eventually reach a pair with

|b| ≤ 9.

this leaves us with 5 · 19 = 95 ordered pairs to check (though only about one third have
b ≡ c (mod 3)). This can be done by the following code:

1 import functools

2 @functools.lru_cache ()

3 def f(x0 , y0):

4 if x0 == 0 and y0 == 0:

5 return 0

6 if x0 % 2 == (y0 % 5) % 2:

7 d = y0 % 5
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8 else:

9 d = (y0 % 5) + 5

10

11 x1 = (x0 - d) // (-2)

12 y1 = (y0 - d) // (-5)

13

14 return 1 + f(x1 , y1)

15

16 for x in range(-9, 10):

17 for y in range(-2, 3):

18 if (x % 3 == y % 3):

19 print(f"({x:2d}, {y:2d}) finished in {f(x,y)} moves")

As this gives the output

1 (-9, 0) finished in 5 moves

2 (-8, -2) finished in 5 moves

3 (-8, 1) finished in 5 moves

4 (-7, -1) finished in 5 moves

5 (-7, 2) finished in 5 moves

6 (-6, 0) finished in 3 moves

7 (-5, -2) finished in 3 moves

8 (-5, 1) finished in 3 moves

9 (-4, -1) finished in 3 moves

10 (-4, 2) finished in 3 moves

11 (-3, 0) finished in 3 moves

12 (-2, -2) finished in 3 moves

13 (-2, 1) finished in 3 moves

14 (-1, -1) finished in 3 moves

15 (-1, 2) finished in 3 moves

16 ( 0, 0) finished in 0 moves

17 ( 1, -2) finished in 2 moves

18 ( 1, 1) finished in 1 moves

19 ( 2, -1) finished in 2 moves

20 ( 2, 2) finished in 1 moves

21 ( 3, 0) finished in 2 moves

22 ( 4, -2) finished in 2 moves

23 ( 4, 1) finished in 2 moves

24 ( 5, -1) finished in 2 moves

25 ( 5, 2) finished in 2 moves

26 ( 6, 0) finished in 4 moves

27 ( 7, -2) finished in 4 moves

28 ( 7, 1) finished in 4 moves

29 ( 8, -1) finished in 4 moves

30 ( 8, 2) finished in 4 moves

31 ( 9, 0) finished in 4 moves

we are done.
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§4 USAMO 1997/4

To clip a convex n-gon means to choose a pair of consecutive sides AB, BC and to replace them

by the three segments AM , MN , and NC, where M is the midpoint of AB and N is the midpoint

of BC. In other words, one cuts off the triangle MBN to obtain a convex (n + 1)-gon. A regular

hexagon P6 of area 1 is clipped to obtain a heptagon P7. Then P7 is clipped (in one of the seven

possible ways) to obtain an octagon P8, and so on. Prove that no matter how the clippings are

done, the area of Pn is greater than 1
3 , for all n ≥ 6.

Call the original hexagon ABCDEF . We show the area common to triangles ACE
and BDF is in every Pn; this solves the problem since the area is 1/3.

For every side of a clipped polygon, we define its foundation recursively as follows:

• AB, BC, CD, DE, EF , FA are each their own foundation (we also call these
original sides).

• When a new clipped edge is added, its foundation is the union of the foundations
of the two edges it touches.

Hence, any foundations are nonempty subsets of original sides.

Claim — All foundations are in fact at most two-element sets of adjacent original
sides.

Proof. It’s immediate by induction that any two adjacent sides have at most two elements
in the union of their foundations, and if there are two, they are two adjacent original
sides.

Now, if a side has foundation contained in {AB,BC}, say, then the side should be
contained within triangle ABC. Hence the side does not touch AC. This proves the
problem.
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§5 USAMO 1997/5

If a, b, c > 0 prove that

1

a3 + b3 + abc
+

1

b3 + c3 + abc
+

1

c3 + a3 + abc
≤ 1

abc
.

From a3 + b3 ≥ ab(a + b), the left-hand side becomes∑
cyc

1

a3 + b3 + abc
≤
∑
cyc

1

ab(a + b + c)
=

1

abc

∑
cyc

c

a + b + c
=

1

abc
.
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§6 USAMO 1997/6

Suppose the sequence of nonnegative integers a1, a2, . . . , a1997 satisfies

ai + aj ≤ ai+j ≤ ai + aj + 1

for all i, j ≥ 1 with i + j ≤ 1997. Show that there exists a real number x such that an = bnxc for

all 1 ≤ n ≤ 1997.

We are trying to show there exists an x ∈ R such that

an
n
≤ x <

an + 1

n
∀n.

This means we need to show

max
i

ai
i
< min

j

aj + 1

j
.

Replace 1997 by N . We will prove this by induction, but we will need some extra
hypotheses on the indices i, j which are used above.

Claim — Suppose that

• Integers a1, a2, . . . , aN satisfy the given conditions.

• Let i = argmaxn
an
n ; if there are ties, pick the smallest i.

• Let j = argminn
an+1
n ; if there are ties, pick the smallest j.

Then
ai
i
<

aj + 1

j
.

Moreover, these two fractions are in lowest terms, and are adjacent in the Farey
sequence of order max(i, j).

Proof. By induction on N ≥ 1 with the base case clear. So suppose we have the induction
hypothesis with numbers a1, . . . , aN−1, with i and j as promised.

Now, consider the new number aN . We have two cases:

• Suppose i + j > N . Then, no fraction with denominator N can lie strictly inside
the interval; so we may write for some integer b

b

N
≤ ai

i
<

aj + 1

j
≤ b + 1

N
.

For purely algebraic reasons we have

b− ai
N − i

≤ b

N
≤ ai

i
<

aj + 1

j
≤ b + 1

N
≤ b− aj

N − j
.

Now,

aN ≥ ai + aN−i ≥ ai + (N − i) · ai
i

≥ ai + (b− ai) = b

aN ≤ aj + aN−j + 1 ≤ (aj + 1) + (N − j) · aj + 1

j

= (aj + 1) + (b− aj) = b + 1.
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Thus aN ∈ {b, b + 1}. This proves that aN
N ≤

ai
i while aN+1

N ≥ aj+1
j . Moreover, the

pair (i, j) does not change, so all inductive hypotheses carry over.

• On the other hand, suppose i + j = N . Then we have

ai
i
<

ai + aj + 1

N
<

aj + 1

j
.

Now, we know aN could be either ai + aj or ai + aj + 1. If it’s the former, then
(i, j) becomes (i,N). If it’s the latter, then (i, j) becomes (N, j). The properties of

Farey sequences ensure that the
ai+aj+1

N is reduced, either way.
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