USA TST Selection Test for $66^{\text {th }}$ IMO and $14^{\text {th }}$ EGMO

Pittsburgh, PA

Day I $\quad 1: 20 \mathrm{pm}-5: 50 \mathrm{pm}$
Tuesday, June 18, 2024

Time limit: 4.5 hours. If you need to add page headers after the time limit, you must do so under proctor supervision. Proctors may not answer clarification questions.

You may keep the problems, but you cannot discuss them publicly until they are posted by staff online.

Problem 1. For every ordered pair of integers (i, j), not necessarily positive, we wish to select a point $P_{i, j}$ in the Cartesian plane whose coordinates lie inside the unit square defined by

$$
i<x<i+1, \quad j<y<j+1
$$

Find all real numbers $c>0$ for which it's possible to choose these points such that for all integers i and j, the (possibly concave or degenerate) quadrilateral $P_{i, j} P_{i+1, j} P_{i+1, j+1} P_{i, j+1}$ has perimeter strictly less than c.

Problem 2. Let p be an odd prime number. Suppose P and Q are polynomials with integer coefficients such that $P(0)=Q(0)=1$, there is no nonconstant polynomial dividing both P and Q, and

$$
1+\frac{x}{1+\frac{2 x}{1+\frac{\ddots}{1+(p-1) x}}}=\frac{P(x)}{Q(x)} .
$$

Show that all coefficients of P except for the constant coefficient are divisible by p, and all coefficients of Q are not divisible by p.

Problem 3. Let $A=\left\{a_{1}, \ldots, a_{2024}\right\}$ be a set of 2024 pairwise distinct real numbers. Assume that there exist positive integers $b_{1}, b_{2}, \ldots, b_{2024}$ such that

$$
a_{1} b_{1}+a_{2} b_{2}+\cdots+a_{2024} b_{2024}=0
$$

Prove that one can choose $a_{2025}, a_{2026}, a_{2027}, \ldots$ such that $a_{k} \in A$ for all $k \geq 2025$ and, for every positive integer d, there exist infinitely many positive integers n satisfying

$$
\sum_{k=1}^{n} a_{k} k^{d}=0
$$

USA TST Selection Test for $66^{\text {th }}$ IMO and $14^{\text {th }}$ EGMO

Pittsburgh, PA
Day II $1: 20 \mathrm{pm}-5: 50 \mathrm{pm}$

Thursday, June 20, 2024

Time limit: 4.5 hours. If you need to add page headers after the time limit, you must do so under proctor supervision. Proctors may not answer clarification questions.
You may keep the problems, but you cannot discuss them publicly until they are posted by staff online.

Problem 4. Let $A B C D$ be a quadrilateral inscribed in a circle with center O and E be the intersection of segments $A C$ and $B D$. Let ω_{1} be the circumcircle of $A D E$ and ω_{2} be the circumcircle of $B C E$. The tangent to ω_{1} at A and the tangent to ω_{2} at C meet at P. The tangent to ω_{1} at D and the tangent to ω_{2} at B meet at Q. Show that $O P=O Q$.

Problem 5. For a positive integer k, let $s(k)$ denote the number of 1 s in the binary representation of k. Prove that for any positive integer n,

$$
\sum_{i=1}^{n}(-1)^{s(3 i)}>0
$$

Problem 6. Determine whether there exists a function $f: \mathbb{Z}_{>0} \rightarrow \mathbb{Z}_{>0}$ such that for all positive integers m and n,

$$
f(m+n f(m))=f(n)^{m}+2024!\cdot m
$$

USA TST Selection Test for $66^{\text {th }}$ IMO and $14^{\text {th }}$ EGMO

Pittsburgh, PA
Day III 1:20pm - 5:50pm

Saturday, June 22, 2024

Time limit: 4.5 hours. If you need to add page headers after the time limit, you must do so under proctor supervision. Proctors may not answer clarification questions.
You may keep the problems, but you cannot discuss them publicly until they are posted by staff online.

Problem 7. An infinite sequence $a_{1}, a_{2}, a_{3}, \ldots$ of real numbers satisfies

$$
a_{2 n-1}+a_{2 n}>a_{2 n+1}+a_{2 n+2} \quad \text { and } \quad a_{2 n}+a_{2 n+1}<a_{2 n+2}+a_{2 n+3}
$$

for every positive integer n. Prove that there exists a real number C such that $a_{n} a_{n+1}<C$ for every positive integer n.

Problem 8. Let $A B C$ be a scalene triangle, and let D be a point on side $B C$ satisfying $\angle B A D=\angle D A C$. Suppose that X and Y are points inside $A B C$ such that triangles $A B X$ and $A C Y$ are similar and quadrilaterals $A C D X$ and $A B D Y$ are cyclic. Let lines $B X$ and $C Y$ meet at S and lines $B Y$ and $C X$ meet at T. Prove that lines $D S$ and $A T$ are parallel.

Problem 9. Let $n \geq 2$ be a fixed integer. The cells of an $n \times n$ table are filled with the integers from 1 to n^{2} with each number appearing exactly once. Let N be the number of unordered quadruples of cells on this board which form an axis-aligned rectangle, with the two smaller integers being on opposite vertices of this rectangle. Find the largest possible value of N.

