2015 USA Team Selection Test Selection Test Day 1
 Carnegie Mellon University
 June 23, 2015
 1:15-5:45pm

1. Let $a_{1}, a_{2}, \ldots, a_{n}$ be a sequence of real numbers, and let m be a fixed positive integer less than n. We say an index k with $1 \leq k \leq n$ is good if there exists some ℓ with $1 \leq \ell \leq m$ such that

$$
a_{k}+a_{k+1}+\cdots+a_{k+\ell-1} \geq 0,
$$

where the indices are taken modulo n. Let T be the set of all good indices. Prove that

$$
\sum_{k \in T} a_{k} \geq 0 .
$$

2. Let $A B C$ be a scalene triangle. Let K_{a}, L_{a}, and M_{a} be the respective intersections with $B C$ of the internal angle bisector, external angle bisector, and the median from A. The circumcircle of $A K_{a} L_{a}$ intersects $A M_{a}$ a second time at a point X_{a} different from A. Define X_{b} and X_{c} analogously. Prove that the circumcenter of $X_{a} X_{b} X_{c}$ lies on the Euler line of $A B C$.
(The Euler line of $A B C$ is the line passing through the circumcenter, centroid, and orthocenter of $A B C$.)
3. Let P be the set of all primes, and let M be a non-empty subset of P. Suppose that for any non-empty subset $\left\{p_{1}, p_{2}, \ldots, p_{k}\right\}$ of M, all prime factors of $p_{1} p_{2} \cdots p_{k}+1$ are also in M. Prove that $M=P$.

2015 USA Team Selection Test Selection Test Day 2
 Carnegie Mellon University
 June 25, 2015
 1:15-5:45pm

4. Let x, y, and z be real numbers (not necessarily positive) such that $x^{4}+y^{4}+z^{4}+x y z=4$. Show that

$$
x \leq 2 \quad \text { and } \quad \sqrt{2-x} \geq \frac{y+z}{2}
$$

5. Let $\varphi(n)$ denote the number of positive integers less than n that are relatively prime to n. Prove that there exists a positive integer m for which the equation $\varphi(n)=m$ has at least 2015 solutions in n.
6. A Nim-style game is defined as follows. Two positive integers k and n are specified, along with a finite set S of k-tuples of integers (not necessarily positive). At the start of the game, the k-tuple $(n, 0,0, \ldots, 0)$ is written on the blackboard.

A legal move consists of erasing the tuple $\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ which is written on the blackboard and replacing it with $\left(a_{1}+b_{1}, a_{2}+b_{2}, \ldots, a_{k}+b_{k}\right)$, where $\left(b_{1}, b_{2}, \ldots, b_{k}\right)$ is an element of the set S. Two players take turns making legal moves, and the first to write a negative integer loses. In the event that neither player is ever forced to write a negative integer, the game is a draw.

Prove that there is a choice of k and S with the following property: the first player has a winning strategy if n is a power of 2 , and otherwise the second player has a winning strategy.

