Team Selection Test for the Selection Team of $54^{\hbox{th}}$ IMO

Lincoln, Nebraska Day I 1:30 PM - 6:00 PM June 22, 2012

- 1. Find all infinite sequences a_1, a_2, \ldots of positive integers satisfying the following properties:
 - (a) $a_1 < a_2 < a_3 < \cdots$,
 - (b) there are no positive integers i, j, k, not necessarily distinct, such that $a_i + a_j = a_k$,
 - (c) there are infinitely many k such that $a_k = 2k 1$.
- 2. Let ABCD be a quadrilateral with AC = BD. Diagonals AC and BD meet at P. Let ω_1 and O_1 denote the circumcircle and the circumcenter of triangle ABP. Let ω_2 and O_2 denote the circumcircle and circumcenter of triangle CDP. Segment BC meets ω_1 and ω_2 again at S and T (other than B and C), respectively. Let M and N be the midpoints of minor arcs \widehat{SP} (not including B) and \widehat{TP} (not including C). Prove that $MN \parallel O_1O_2$.
- 3. Let \mathbb{N} be the set of positive integers. Let $f: \mathbb{N} \to \mathbb{N}$ be a function satisfying the following two conditions:
 - (a) f(m) and f(n) are relatively prime whenever m and n are relatively prime.
 - (b) $n \le f(n) \le n + 2012$ for all n.

Prove that for any natural number n and any prime p, if p divides f(n) then p divides n.

Team Selection Test for the Selection Team of $54^{\hbox{th}}$ IMO

Lincoln, Nebraska Day II 1:30 PM - 6:00 PM June 24, 2012

- 4. In scalene triangle ABC, let the feet of the perpendiculars from A to BC, B to CA, C to AB be A_1, B_1, C_1 , respectively. Denote by A_2 the intersection of lines BC and B_1C_1 . Define B_2 and C_2 analogously. Let D, E, F be the respective midpoints of sides BC, CA, AB. Show that the perpendiculars from D to AA_2 , E to BB_2 and F to CC_2 are concurrent.
- 5. A rational number x is given. Prove that there exists a sequence x_0, x_1, x_2, \ldots of rational numbers with the following properties:
 - (a) $x_0 = x$;
 - (b) for every $n \ge 1$, either $x_n = 2x_{n-1}$ or $x_n = 2x_{n-1} + \frac{1}{n}$;
 - (c) x_n is an integer for some n.
- 6. Positive real numbers x, y, z satisfy xyz + xy + yz + zx = x + y + z + 1. Prove that

$$\frac{1}{3} \left(\sqrt{\frac{1+x^2}{1+x}} + \sqrt{\frac{1+y^2}{1+y}} + \sqrt{\frac{1+z^2}{1+z}} \right) \leq \left(\frac{x+y+z}{3} \right)^{5/8}.$$

Team Selection Test for the Selection Team of 54th IMO

Lincoln, Nebraska Day III 1:30 PM - 6:00 PM June 26, 2012

- 7. Triangle ABC is inscribed in circle Ω . The interior angle bisector of angle A intersects side BC and Ω at D and L (other than A), respectively. Let M be the midpoint of side BC. The circumcircle of triangle ADM intersects sides AB and AC again at Q and P (other than A), respectively. Let N be the midpoint of segment PQ, and let H be the foot of the perpendicular from L to line ND. Prove that line ML is tangent to the circumcircle of triangle HMN.
- 8. Let n be a positive integer. Consider a triangular array of nonnegative integers as follows:

Row 1:
$$a_{0,1}$$
 Row 2: $a_{0,2}$ $a_{1,2}$
$$\vdots \qquad \vdots \qquad \vdots$$
 Row $n-1$: $a_{0,n-1}$ $a_{1,n-1}$ \cdots $a_{n-2,n-1}$ Row n : $a_{0,n}$ $a_{1,n}$ $a_{2,n}$ \cdots $a_{n-1,n}$

Call such a triangular array stable if for every $0 \le i < j < k \le n$ we have

$$a_{i,j} + a_{j,k} \le a_{i,k} \le a_{i,j} + a_{j,k} + 1.$$

For $s_1, \ldots s_n$ any nondecreasing sequence of nonnegative integers, prove that there exists a unique stable triangular array such that the sum of all of the entries in row k is equal to s_k .

9. Given a set S of n variables, a binary operation \times on S is called simple if it satisfies $(x \times y) \times z = x \times (y \times z)$ for all $x, y, z \in S$ and $x \times y \in \{x, y\}$ for all $x, y \in S$. Given a simple operation \times on S, any string of elements in S can be reduced to a single element, such as $xyz \to x \times (y \times z)$. A string of variables in S is called full if it contains each variable in S at least once, and two strings are equivalent if they evaluate to the same variable regardless of which simple \times is chosen. For example xxx, xx, and x are equivalent, but these are only full if n = 1. Suppose T is a set of strings such that any full string is equivalent to exactly one element of T. Determine the number of elements of T.