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30 May 2025

This is a compilation of solutions for the 2023 JMO. The ideas of the
solution are a mix of my own work, the solutions provided by the competition
organizers, and solutions found by the community. However, all the writing
is maintained by me.

These notes will tend to be a bit more advanced and terse than the “official”
solutions from the organizers. In particular, if a theorem or technique is not
known to beginners but is still considered “standard”, then I often prefer to
use this theory anyways, rather than try to work around or conceal it. For
example, in geometry problems I typically use directed angles without further
comment, rather than awkwardly work around configuration issues. Similarly,
sentences like “let R denote the set of real numbers” are typically omitted
entirely.

Corrections and comments are welcome!
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§0 Problems
1. Find all triples of positive integers (x, y, z) satisfying

2(x+ y + z + 2xyz)2 = (2xy + 2yz + 2zx+ 1)2 + 2023.

2. In an acute triangle ABC, let M be the midpoint of BC. Let P be the foot of
the perpendicular from C to AM . Suppose that the circumcircle of triangle ABP
intersects line BC at two distinct points B and Q. Let N be the midpoint of AQ.
Prove that NB = NC.

3. Consider an n-by-n board of unit squares for some odd positive integer n. We say
that a collection C of identical dominoes is a maximal grid-aligned configuration on
the board if C consists of (n2 − 1)/2 dominoes where each domino covers exactly
two neighboring squares and the dominoes don’t overlap: C then covers all but
one square on the board. We are allowed to slide (but not rotate) a domino
on the board to cover the uncovered square, resulting in a new maximal grid-
aligned configuration with another square uncovered. Let k(C) be the number
of distinct maximal grid-aligned configurations obtainable from C by repeatedly
sliding dominoes.
Find the maximum possible value of k(C) as a function of n.

4. Two players, Blake and Ruby, play the following game on an infinite grid of unit
squares, all initially colored white. The players take turns starting with Blake. On
Blake’s turn, Blake selects one white unit square and colors it blue. On Ruby’s turn,
Ruby selects two white unit squares and colors them red. The players alternate
until Blake decides to end the game. At this point, Blake gets a score, given by the
number of unit squares in the largest (in terms of area) simple polygon containing
only blue unit squares.
What is the largest score Blake can guarantee?

5. Positive integers a and N are fixed, and N positive integers are written on a
blackboard. Alice and Bob play the following game. On Alice’s turn, she must
replace some integer n on the board with n+ a, and on Bob’s turn he must replace
some even integer n on the board with n/2. Alice goes first and they alternate
turns. If on his turn Bob has no valid moves, the game ends.
After analyzing the N integers on the board, Bob realizes that, regardless of what
moves Alice makes, he will be able to force the game to end eventually. Show
that, in fact, for this value of a and these N integers on the board, the game is
guaranteed to end regardless of Alice’s or Bob’s moves.

6. Isosceles triangle ABC, with AB = AC, is inscribed in circle ω. Let D be an
arbitrary point inside BC such that BD 6= DC. Ray AD intersects ω again at E
(other than A). Point F (other than E) is chosen on ω such that ∠DFE = 90◦.
Line FE intersects rays AB and AC at points X and Y , respectively. Prove that
∠XDE = ∠EDY .
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§1 Solutions to Day 1
§1.1 JMO 2023/1, proposed by Titu Andreescu
Available online at https://aops.com/community/p27349258.

Problem statement

Find all triples of positive integers (x, y, z) satisfying

2(x+ y + z + 2xyz)2 = (2xy + 2yz + 2zx+ 1)2 + 2023.

Answer: (3, 3, 2) and permutations.
The solution hinges upon the following claim:

Claim — The identity

2(x+ y + z + 2xyz)2 − (2xy + 2yz + 2zx+ 1)2 = (2x2 − 1)(2y2 − 1)(2z2 − 1)

is true.

Proof. This can be proved by manually expanding; we show where it “came from”. In
algebraic number theory, there is a norm function Norm : Q(

√
2)→ Q defined by

Norm(a+ b
√
2) = a2 − 2b2

which is multiplicative, meaning

Norm(u · v) = Norm(u) ·Norm(v).

This means that for any rational numbers x, y, z, we should have

Norm
(
(1 +

√
2x)(1 +

√
2y)(1 +

√
2z)
)

= Norm(1 +
√
2x) ·Norm(1 +

√
2y) ·Norm(1 +

√
2z).

But (1 +
√
2x)(1 +

√
2y)(1 +

√
2z) = (2xy + 2yz + 2zx+ 1) + (x+ y + z + 2xyz)

√
2 so

the above equation is the negative of the desired identity.

We are thus reduced to find positive integers x, y, z satisfying

(2x2 − 1)(2y2 − 1)(2z2 − 1) = 2023 = 7 · 172.

Each of the factors is a positive integer greater than 1. The only divisors of 2023 of the
form 2t2 − 1 are 1, 7, 17. This gives the answers claimed.
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§1.2 JMO 2023/2, proposed by Holden Mui
Available online at https://aops.com/community/p27349297.

Problem statement

In an acute triangle ABC, let M be the midpoint of BC. Let P be the foot of
the perpendicular from C to AM . Suppose that the circumcircle of triangle ABP
intersects line BC at two distinct points B and Q. Let N be the midpoint of AQ.
Prove that NB = NC.

We show several different approaches. In all solutions, let D denote the foot of the
altitude from A.

A

B CD
M

P

Q

N

R

¶ Most common synthetic approach. The solution hinges on the following claim:

Claim — Q coincides with the reflection of D across M .

Proof. Note that ]ADC = ]APC = 90◦, so ADPC is cyclic. Then by power of a point
(with the lengths directed),

MB ·MQ = MA ·MP = MC ·MD.

Since MB = MC, the claim follows.

It follows that MN ‖ AD, as M and N are respectively the midpoints of AQ and DQ.
Thus MN ⊥ BC, and so N lies on the perpendicular bisector of BC, as needed.

Remark (David Lin). One can prove the main claim without power of a point as well, as
follows: Let R be the foot from B to AM , so BRCP is a parallelogram. Note that ABDR
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is cyclic, and hence

]DRM = ]DBA = QBA = ]QPA = ]QPM.

Thus, DR ‖ PQ, so DRQP is also a parallelogram.

¶ Synthetic approach with no additional points at all.

Claim — 4BPC ∼ 4ANM (oppositely oriented).

Proof. We have 4BMP ∼ 4AMQ from the given concyclicity of ABPQ. Then

BM

BP
=

AM

AQ
=⇒ 2BM

BP
=

AM

AQ/2
=⇒ BC

BP
=

AM

AN

implying the similarity (since ]MAQ = ]BPM).

This similarity gives us the equality of directed angles

] (BC,MN) = −] (PC,AM) = 90◦

as desired.

¶ Synthetic approach using only the point R. Again let R be the foot from B to AM ,
so BRCP is a parallelogram.

Claim — ARQC is cyclic; equivalently, 4MAQ ∼ 4MCR.

Proof. MR ·MA = MP ·MA = MB ·MQ = MC ·MQ.

Note that in 4MCR, the M -median is parallel to CP and hence perpendicular to
RM . The same should be true in 4MAQ by the similarity, so MN ⊥MQ as needed.

¶ Cartesian coordinates approach with power of a point. Suppose we set B = (−1, 0),
M = (0, 0), C = (1, 0), and A = (a, b). One may compute:

←−→
AM : 0 = bx− ay ⇐⇒ y =

b

a
x

←→
CP : 0 = a(x− 1) + by ⇐⇒ y = −a

b
(x− 1) = −a

b
x+

a

b
.

P =

(
a2

a2 + b2
,

ab

a2 + b2

)

Now note that
AM =

√
a2 + b2, PM =

a√
a2 + b2

together with power of a point

AM · PM = BM ·QM

to immediately deduce that Q = (a, 0). Hence N = (0, b/2) and we’re done.
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¶ Cartesian coordinates approach without power of a point (outline). After computing
A and P as above, one could also directly calculate

Perpendicular bisector of AB : y = −a+ 1

b
x+

a2 + b2 − 1

2b

Perpendicular bisector of PB : y = −
(
2a

b
+

b

a

)
x− b

2a

Perpendicular bisector of PA : y = −a

b
x+

a+ a2 + b2

2b
.

Circumcenter of 4PAB =

(
−a+ 1

2
,
2a2 + 2a+ b2

2b

)
.

This is enough to extract the coordinates of Q = (•, 0), because B = (−1, 0) is given,
and the x-coordinate of the circumcenter should be the average of the x-coordinates of
B and Q. In other words, Q = (−a, 0). Hence, N =

(
0, b

2

)
, as needed.

¶ Ill-advised barycentric approach (outline). Use reference triangle ABC. The A-
median is parametrized by (t : 1 : 1) for t ∈ R. So because of CP ⊥ AM , we are looking
for t such that (

t ~A+ ~B + ~C

t+ 2
− ~C

)
⊥

(
A−

~B + ~C

2

)
.

This is equivalent to (
t ~A+ ~B − (t+ 1)~C

)
⊥
(
2 ~A− ~B − ~C

)
.

By the perpendicularity formula for barycentric coordinates (EGMO 7.16), this is equiva-
lent to

0 = a2t− b2 · (3t+ 2) + c2 · (2− t)

=
(
a2 − 3b2 − c2

)
t− 2(b2 − c2)

=⇒ t =
2(b2 − c2)

a2 − 3b2 − c2
.

In other words,
P =

(
2(b2 − c2) : a2 − 3b2 − c2 : a2 − 3b2 − c2

)
.

A long calculation gives a2yP zP + b2zPxP + c2xP yP = (a2 − 3b2 − c2)(a2 − b2 + c2)(a2 −
2b2 − 2c2). Together with xP + yP + zP = 2a2 − 4b2 − 4c2, this makes the equation of
(ABP ) as

0 = −a2yz − b2zx− c2xy +
a2 − b2 + c2

2
z(x+ y + z).

To solve for Q, set x = 0 to get to get

a2yz =
a2 − b2 + c2

2
z(y + z) =⇒ y

z
=

a2 − b2 + c2

a2 + b2 − c2
.

In other words,
Q =

(
0 : a2 − b2 + c2 : a2 + b2 − c2

)
.

Taking the average with A = (1, 0, 0) then gives

N =
(
2a2 : a2 − b2 + c2 : a2 + b2 − c2

)
.

The equation for the perpendicular bisector of BC is given by (see EGMO 7.19)

0 = a2(z − y) + x(c2 − b2)

which contains N , as needed.
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¶ Extremely ill-advised complex numbers approaches (outline). Suppose we pick a,
b, c as the unit circle, and let m = (b+ c)/2. Using the fully general “foot” formula, one
can get

p =
(a−m)c+ (a−m)c+ am− am

2(a−m)
=

a2b− a2c− ab2 − 2abc− ac2 + b2c+ 3bc2

4bc− 2a(b+ c)

Meanwhile, an extremely ugly calculation will eventually yield

q =
bc
a + b+ c− a

2

so

n =
a+ q

2
=

a+ b+ c+ bc
a

4
=

(a+ b)(a+ c)

2a
.

There are a few ways to then verify NB = NC. The simplest seems to be to verify that

n− b+c
2

b− c
=

a− b− c+ bc
a

4(b− c)
=

(a− b)(a− c)

2a(b− c)

is pure imaginary, which is clear.
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§1.3 JMO 2023/3, proposed by Holden Mui
Available online at https://aops.com/community/p27349423.

Problem statement

Consider an n-by-n board of unit squares for some odd positive integer n. We say
that a collection C of identical dominoes is a maximal grid-aligned configuration on
the board if C consists of (n2−1)/2 dominoes where each domino covers exactly two
neighboring squares and the dominoes don’t overlap: C then covers all but one square
on the board. We are allowed to slide (but not rotate) a domino on the board to cover
the uncovered square, resulting in a new maximal grid-aligned configuration with
another square uncovered. Let k(C) be the number of distinct maximal grid-aligned
configurations obtainable from C by repeatedly sliding dominoes.

Find the maximum possible value of k(C) as a function of n.

The answer is that

k(C) ≤
(
n+ 1

2

)2

.

Remark (Comparison with USAMO version). In the USAMO version of the problem,
students instead are asked to find all possible values of k(C). The answer is k(C) ∈{
1, 2, . . . ,

(
n−1
2

)2} ∪ {(n+1
2

)2}.

Index the squares by coordinates (x, y) ∈ {1, 2, . . . , n}2. We say a square is special if it
is empty or it has the same parity in both coordinates as the empty square.

Construct a directed graph G = G(C) whose vertices are special squares as follows: for
each domino on a special square s, we draw a directed edge from s to the special square
that domino points to, if any. (If the special square has both odd coordinates, all special
squares have an outgoing edge except the empty cell. In the even-even case, some arrows
may point “off the board” and not be drawn.)

Now focus specifically on the weakly connected component T of G (i.e. the connected
component of the undirected version of G) containing the empty square.
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Claim — The graph T has no cycles, even undirected. Hence, the undirected
version of T is tree.

Proof. Assume for contradiction T had an undirected cycle. Then if we look at the
direction of arrows along the cycle, because every vertex of T had outdegree at most 1,
the arrows must all point in the same direction (i.e. we actually have a directed cycle).
But then T must consist solely of this cycle. Yet the empty square has outdegree 0,
contradiction.

Notice that all the arrows along T point towards the empty cell, and moving a domino
corresponds to flipping an arrow. Therefore:

Claim — k(C) is exactly the number of vertices of T .

Proof. Starting with the underlying tree, the set of possible graphs is described by picking
one vertex to be the sink (the empty cell) and then directing all arrows towards it.

This implies that k(C) ≤
(
n+1
2

)2, the total number of vertices of G (this could only
occur if the special squares are odd-odd, not even-even). Equality is achieved as long as
T is a spanning tree; one example of a way to achieve this is using the snake configuration
below.
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§2 Solutions to Day 2
§2.1 JMO 2023/4, proposed by David Torres
Available online at https://aops.com/community/p27349414.

Problem statement

Two players, Blake and Ruby, play the following game on an infinite grid of unit
squares, all initially colored white. The players take turns starting with Blake. On
Blake’s turn, Blake selects one white unit square and colors it blue. On Ruby’s turn,
Ruby selects two white unit squares and colors them red. The players alternate
until Blake decides to end the game. At this point, Blake gets a score, given by the
number of unit squares in the largest (in terms of area) simple polygon containing
only blue unit squares.

What is the largest score Blake can guarantee?

The answer is 4 squares.

¶ Algorithm for Blake to obtain at least 4 squares. We simply let Blake start with
any cell blue, then always draw adjacent to a previously drawn blue cell until this is no
longer possible.

Note that for n ≤ 3, any connected region of n blue cells has more than 2n liberties
(non-blue cells adjacent to a blue cell); up to translation, rotation, and reflection, all the
cases are shown in the figure below with liberties being denoted by circles.

So as long as n ≤ 3, it’s impossible that Ruby has blocked every liberty, since Ruby
has colored exactly 2n cells red. Therefore, this algorithm could only terminate once
n ≥ 4.

¶ Algorithm for Ruby to prevent more than 4 squares. Divide the entire grid into
2 × 2 squares, which we call windows. Any time Blake makes a move in a cell c, let
Ruby mark any orthogonal neighbors of c in its window; then place any leftover red cells
arbitrarily.
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Claim — It’s impossible for any window to contain two orthogonally adjacent blue
cells.

Proof. By construction: if there were somehow two adjacent blue cells in the same
window, whichever one was played first should have caused red cells to be added.

We show this gives the upper bound of 4 squares. Consider a blue cell w, and assume
WLOG it is in the southeast corner of a window. Label squares x, y, z as shown below.

w x

y z

Note that by construction, the blue polygon cannot leave the square {w, x, y, z}, since
whenever one of these four cells is blue, its neighbours outside that square are guaranteed
to be red. This implies the bound.

Remark (For Tetris fans). Here is a comedic alternative finish after proving the claim.
Consider the possible tetrominoes (using the notation of https://en.wikipedia.org/wiki/
Tetromino#One-sided_tetrominoes). We claim that only the square (O) is obtainable; as

• T, J/L, and I all have three cells in a row, so they can’t occur;

• S and Z can’t occur either; if the bottom row of an S crossed a window boundary,
then the top row doesn’t for example.

Moreover, the only way a blue O could be obtained is if each of it cells is in a different
window. In that case, no additional blue cells can be added: it’s fully surrounded by red.

Finally, for any k-omino with k > 4, one can find a tetromino as a subset. (Proof: take
the orthogonal adjacency graph of the k-omino, choose a spanning tree, and delete leaves
from the tree until there are only four vertices left.)

Remark (Common wrong approach). Suppose Ruby employs the following algorithm
whenever Blake places a square x. If either the north and west neighbors of x are unoccupied,
place red squares on both of them. With any leftover red squares, place them at other
neighbors of x if possible. Finally, place any other red squares arbitrarily. (Another variant,
the one Evan originally came up with, is to place east if possible when west is occupied,
place south if possible when north is occupied, and then place any remaining red squares
arbitrarily.)

As written, this strategy does not work. The reason is that one can end up in the following
situation (imagine the blue square in the center is played first; moves for Ruby are drawn as
red X’s):
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1

2

3

In order to prevent Blake from winning, Ruby would need to begin playing moves not
adjacent to Blake’s most recent move.

Thus in order for this solution to be made correct, one needs a careful algorithm for how
Ruby should play when the north and west neighbors are not available. As far as I am
aware, there are some specifications that work (and some that don’t), but every working
algorithm I have seen seems to involve some amount of casework.

It is even more difficult to come up with a solution involving playing on just “some” two
neighbors of recently added blue squares without the “prefer north and west” idea.
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§2.2 JMO 2023/5, proposed by Carl Schildkraut
Available online at https://aops.com/community/p27349336.

Problem statement

Positive integers a and N are fixed, and N positive integers are written on a
blackboard. Alice and Bob play the following game. On Alice’s turn, she must
replace some integer n on the board with n+ a, and on Bob’s turn he must replace
some even integer n on the board with n/2. Alice goes first and they alternate turns.
If on his turn Bob has no valid moves, the game ends.

After analyzing the N integers on the board, Bob realizes that, regardless of what
moves Alice makes, he will be able to force the game to end eventually. Show that,
in fact, for this value of a and these N integers on the board, the game is guaranteed
to end regardless of Alice’s or Bob’s moves.

For N = 1, there is nothing to prove. We address N ≥ 2 only henceforth. Let S denote
the numbers on the board.

Claim — When N ≥ 2, if ν2(x) < ν2(a) for all x ∈ S, the game must terminate no
matter what either player does.

Proof. The ν2 of a number is unchanged by Alice’s move and decreases by one on Bob’s
move. The game ends when every ν2 is zero.

Hence, in fact the game will always terminate in exactly
∑

x∈S ν2(x) moves in this
case, regardless of what either player does.

Claim — When N ≥ 2, if there exists a number x on the board such that ν2(x) ≥
ν2(a), then Alice can cause the game to go on forever.

Proof. Denote by x the first entry of the board (its value changes over time). Then
Alice’s strategy is to:

• Operate on the first entry if ν2(x) = ν2(a) (the new entry thus has ν2(x+a) > ν2(a));

• Operate on any other entry besides the first one, otherwise.

A double induction then shows that

• Just before each of Bob’s turns, ν2(x) > ν2(a) always holds; and

• After each of Bob’s turns, ν2(x) ≥ ν2(a) always holds.

In particular Bob will never run out of legal moves, since halving x is always legal.

13

http://web.evanchen.cc
https://aops.com/community/p27349336


JMO 2023 Solution Notes web.evanchen.cc, updated 30 May 2025

§2.3 JMO 2023/6, proposed by Anton Trygub
Available online at https://aops.com/community/p27349508.

Problem statement

Isosceles triangle ABC, with AB = AC, is inscribed in circle ω. Let D be an
arbitrary point inside BC such that BD 6= DC. Ray AD intersects ω again at E
(other than A). Point F (other than E) is chosen on ω such that ∠DFE = 90◦.
Line FE intersects rays AB and AC at points X and Y , respectively. Prove that
∠XDE = ∠EDY .

We present three solutions.

¶ Angle chasing solution. Note that (BDA) and (CDA) are congruent, since BA = CA
and ∠BDA + ∠CDA = 180◦. So these two circles are reflections around line ED.
Moreover, (DEF ) is obviously also symmetric around line ED.

E

B

C

A

D

F

X

Y

Y

Hence, the radical axis of (BDA) and (DEF ), and the radical axis of (CDA) and (DEF ),
should be symmetric about line DE. But these radical axii are exactly lines XD and
Y D, so we’re done.

Remark (Motivation). The main idea is that you can replace DX and DY with the radical
axii, letting X ′ and Y ′ be the second intersections of the blue circles. Then for the problem
to be true, you’d need X ′ and Y ′ to be reflections. That’s equivalent to (BDA) and (CDA)
being congruent; you check it and it’s indeed true.

¶ Harmonic solution (mine). Let T be the point on line XFEY such that ∠EDT = 90◦,
and let AT meet ω again at K. Then

TD2 = TF · TE = TK · TA =⇒ ∠DKT = 90◦
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so line DK passes through the antipode M of A.

E

B C

A

D

F

X

Y

M

T

K

Thus,
−1 = (AM ;CB)ω

D
= (EK;BC)ω

A
= (TE;XY )

and since ∠EDT = 90◦ we’re done.

Remark (Motivation). The idea is to kill the points X and Y by reinterpreting the desired
condition as (TD;XY ) = −1 and then projecting through A onto ω. This eliminates
points X and Y altogether and reduces the problem to showing that TA passes through the
harmonic conjugate of E with respect to BC on ω.

The labels on the diagram are slightly misleading in that 4EBC should probably be
thought of as the “reference” triangle.

¶ Pascal solution (Zuming Feng). Extend ray FD to the antipode T of E on ω. Then,

• By Pascal’s theorem on EFTABC, the points X, D, and P := EC ∩ AT are
collinear.

• Similarly by Pascal’s theorem on EFTACB, the points the points Y , D, and
Q := EB ∩AT are collinear.
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E

B

C

A

D

F

X

Y

T PQ

Now it suffices to prove ED bisects ∠QDP . However, ED is the angle bisector of
∠QEP = ∠BEC, but also EA ⊥ QP . Thus triangle QEP is isosceles with QE = PE,
and EA cuts it in half. Since D is on EA, the result follows now.
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