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This is a compilation of solutions for the 2015 JMO. Some of the solutions
are my own work, but many are from the official solutions provided by the
organizers (for which they hold any copyrights), and others were found by
users on the Art of Problem Solving forums.

These notes will tend to be a bit more advanced and terse than the “official”
solutions from the organizers. In particular, if a theorem or technique is not
known to beginners but is still considered “standard”, then I often prefer to
use this theory anyways, rather than try to work around or conceal it. For
example, in geometry problems I typically use directed angles without further
comment, rather than awkwardly work around configuration issues. Similarly,
sentences like “let R denote the set of real numbers” are typically omitted
entirely.

Corrections and comments are welcome!

Contents
0 Problems 2

1 Solutions to Day 1 3
1.1 JMO 2015/1, proposed by Razvan Gelca . . . . . . . . . . . . . . . . . . . 3
1.2 JMO 2015/2, proposed by Titu Andreescu . . . . . . . . . . . . . . . . . . 5
1.3 JMO 2015/3, proposed by Zuming Feng, Jacek Fabrykowski . . . . . . . . 6

2 Solutions to Day 2 9
2.1 JMO 2015/4, proposed by Iurie Boreico . . . . . . . . . . . . . . . . . . . 9
2.2 JMO 2015/5, proposed by Sungyoon Kim . . . . . . . . . . . . . . . . . . 10
2.3 JMO 2015/6, proposed by Maria Monks Gillespie . . . . . . . . . . . . . . 11

1



JMO 2015 Solution Notes web.evanchen.cc, updated 25 February 2024

§0 Problems
1. Given a sequence of real numbers, a move consists of choosing two terms and

replacing each with their arithmetic mean. Show that there exists a sequence
of 2015 distinct real numbers such that after one initial move is applied to the
sequence — no matter what move — there is always a way to continue with a finite
sequence of moves so as to obtain in the end a constant sequence.

2. Solve in integers the equation

x2 + xy + y2 =

(
x+ y

3
+ 1

)3

.

3. Quadrilateral APBQ is inscribed in circle ω with ∠P = ∠Q = 90◦ and AP =
AQ < BP . Let X be a variable point on segment PQ. Line AX meets ω again at
S (other than A). Point T lies on arc AQB of ω such that XT is perpendicular to
AX. Let M denote the midpoint of chord ST .
As X varies on segment PQ, show that M moves along a circle.

4. Find all functions f : Q→ Q such that

f(x) + f(t) = f(y) + f(z)

for all rational numbers x < y < z < t that form an arithmetic progression.

5. Let ABCD be a cyclic quadrilateral. Prove that there exists a point X on segment
BD such that ∠BAC = ∠XAD and ∠BCA = ∠XCD if and only if there exists a
point Y on segment AC such that ∠CBD = ∠Y BA and ∠CDB = ∠Y DA.

6. Steve is piling m ≥ 1 indistinguishable stones on the squares of an n×n grid. Each
square can have an arbitrarily high pile of stones. After he finished piling his stones
in some manner, he can then perform stone moves, defined as follows. Consider
any four grid squares, which are corners of a rectangle, i.e. in positions (i, k), (i, l),
(j, k), (j, l) for some 1 ≤ i, j, k, l ≤ n, such that i < j and k < l. A stone move
consists of either removing one stone from each of (i, k) and (j, l) and moving them
to (i, l) and (j, k) respectively, or removing one stone from each of (i, l) and (j, k)
and moving them to (i, k) and (j, l) respectively.
Two ways of piling the stones are equivalent if they can be obtained from one
another by a sequence of stone moves. How many different non-equivalent ways
can Steve pile the stones on the grid?
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§1 Solutions to Day 1
§1.1 JMO 2015/1, proposed by Razvan Gelca
Available online at https://aops.com/community/p4769963.

Problem statement

Given a sequence of real numbers, a move consists of choosing two terms and
replacing each with their arithmetic mean. Show that there exists a sequence of
2015 distinct real numbers such that after one initial move is applied to the sequence
— no matter what move — there is always a way to continue with a finite sequence
of moves so as to obtain in the end a constant sequence.

One valid example of a sequence is 0, 1, . . . , 2014. We will show how to achieve the
all-1007 sequence based on the first move.

Say two numbers are opposites if their average is 1007. We consider 1007 as its own
opposite.

We consider two cases:

• First, suppose the first initial move did not involve the number 1007. Suppose the
two numbers changed were a and b, replaced by c = 1

2(a+ b) twice.
– If a and b are opposites, we simply operate on all the other pairs of opposites.
– Otherwise let a′ and b′ be the opposites of a and b, so all four of a, b, a′, b′

are distinct. Then operate on a′ and b′ to get c′ = 2014− c. We work with
only these four numbers ande replace them as follows:

1
2(a+ b) 1

2(a+ b) a′ b′
1
2(a+ b) 1

2(a+ b) 1
2(a

′ + b′) 1
2(a

′ + b′)
1007 1

2(a+ b) 1007 1
2(a

′ + b′)
1007 1007 1007 1007

Finally, we operate on the remaining 1005 pairs of opposites.

• Now suppose the first initial move involved the number 1007 and some a. Let k be
any number other than a or its opposite, and let a′, k′ be the opposites of a and k.
We work with only these five numbers: and replace them in the following way:

1
2(a+ 1007) 1

2(a+ 1007) a′ k k′
1
2(a+ 1007) 1

2(a+ 1007) a′ 1007 1007
1
2(a+ 1007) 1

2(a+ 1007) 1
2(a

′ + 1007) 1
2(a

′ + 1007) 1007
1007 1

2(a+ 1007) 1007 1
2(a

′ + 1007) 1007
1007 1007 1007 1007 1007

Finally, we operate on the remaining 1005 pairs of opposites.

Remark. In fact, the same proof basically works for any sequence with average m such
that m is in the sequence, and every term has an opposite.

However for “most” sequences one expects the result to not be possible. As a simple
example, the goal is impossible for (0, 1, . . . , 2013, 2015) since the average of the terms is
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1007 + 1
2015 , but in the process the only denominators ever generated are powers of 2. This

narrows the search somewhat.
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§1.2 JMO 2015/2, proposed by Titu Andreescu
Available online at https://aops.com/community/p4769940.

Problem statement

Solve in integers the equation

x2 + xy + y2 =

(
x+ y

3
+ 1

)3

.

We do the trick of setting a = x+ y and b = x− y. This rewrites the equation as

1

4

(
(a+ b)2 + (a+ b)(a− b) + (a− b)2

)
=

(a
3
+ 1

)3

where a, b ∈ Z have the same parity. This becomes

3a2 + b2 = 4
(a
3
+ 1

)3

which is enough to imply 3 | a, so let a = 3c. Miraculously, this becomes

b2 = (c− 2)2(4c+ 1).

So a solution must have 4c+ 1 = m2, with m odd. This gives

x =
1

8

(
3(m2 − 1)± (m3 − 9m)

)
and y =

1

8

(
3(m2 − 1)∓ (m3 − 9m)

)
.

For mod 8 reasons, this always generates a valid integer solution, so this is the complete
curve of solutions. Actually, putting m = 2n+ 1 gives the much nicer curve

x = n3 + 3n2 − 1 and y = −n3 + 3n+ 1

and permutations.
For n = 0, 1, 2, 3 this gives the first few solutions are (−1, 1), (3, 3), (19,−1), (53,−17),

(and permutations).
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§1.3 JMO 2015/3, proposed by Zuming Feng, Jacek Fabrykowski
Available online at https://aops.com/community/p4769957.

Problem statement

Quadrilateral APBQ is inscribed in circle ω with ∠P = ∠Q = 90◦ and AP = AQ <
BP . Let X be a variable point on segment PQ. Line AX meets ω again at S (other
than A). Point T lies on arc AQB of ω such that XT is perpendicular to AX. Let
M denote the midpoint of chord ST .

As X varies on segment PQ, show that M moves along a circle.

We present three solutions, one by complex numbers, two more synthetic. (A fourth
solution using median formulas is also possible.) Most solutions will prove that the center
of the fixed circle is the midpoint of AO (with O the center of ω); this can be recovered
empirically by letting

• X approach P (giving the midpoint of BP )

• X approach Q (giving the point Q), and

• X at the midpoint of PQ (giving the midpoint of BQ)

which determines the circle; this circle then passes through P by symmetry and we can
find the center by taking the intersection of two perpendicular bisectors (which two?).

¶ Complex solution (Evan Chen). Toss on the complex unit circle with a = −1, b = 1,
z = −1

2 . Let s and t be on the unit circle. We claim Z is the center.
It follows from standard formulas that

x =
1

2
(s+ t− 1 + s/t)

thus
4Rex+ 2 = s+ t+

1

s
+

1

t
+

s

t
+

t

s

which depends only on P and Q, and not on X. Thus

4

∣∣∣∣z − s+ t

2

∣∣∣∣2 = |s+ t+ 1|2 = 3 + (4Rex+ 2)

does not depend on X, done.

¶ Homothety solution (Alex Whatley). Let G, N , O denote the centroid, nine-point
center, and circumcenter of triangle AST , respectively. Let Y denote the midpoint of
AS. Then the three points X, Y , M lie on the nine-point circle of triangle AST , which
is centered at N and has radius 1

2AO.
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A

B

S

T

O

XP Q

M

G
N

Y

Let R denote the radius of ω. Note that the nine-point circle of 4AST has radius
equal to 1

2R, and hence is independent of S and T . Then the power of A with respect to
the nine-point circle equals

AN2 −
(
1

2
R

)2

= AX ·AY =
1

2
AX ·AS =

1

2
AQ2

and hence

AN2 =

(
1

2
R

)2

+
1

2
AQ2

which does not depend on the choice of X. So N moves along a circle centered at A.
Since the points O, G, N are collinear on the Euler line of 4AST with

GO =
2

3
NO

it follows by homothety that G moves along a circle as well, whose center is situated
one-third of the way from A to O. Finally, since A, G, M are collinear with

AM =
3

2
AG

it follows that M moves along a circle centered at the midpoint of AO.

¶ Power of a point solution (Zuming Feng, official solution). We complete the picture
by letting 4KYX be the orthic triangle of 4AST ; in that case line XY meets the ω
again at P and Q.
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A

B

S T

O

X

M

Y

K

P

Q

V

The main claim is:

Claim — Quadrilateral PQKM is cyclic.

Proof. To see this, we use power of a point: let V = QXY P ∩ SKMT . One approach is
that since (V K;ST ) = −1 we have V Q ·V P = V S ·V T = V K ·VM . A longer approach
is more elementary:

V Q · V P = V S · V T = V X · V Y = V K · VM

using the nine-point circle, and the circle with diameter ST .

But the circumcenter of PQKM , is the midpoint of AO, since it lies on the perpendicular
bisectors of KM and PQ. So it is fixed, the end.
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§2 Solutions to Day 2
§2.1 JMO 2015/4, proposed by Iurie Boreico
Available online at https://aops.com/community/p4774049.

Problem statement

Find all functions f : Q→ Q such that

f(x) + f(t) = f(y) + f(z)

for all rational numbers x < y < z < t that form an arithmetic progression.

Answer: any linear function f . These work.
Here is one approach: for any a and d > 0

f(a) + f(a+ 3d) = f(a+ d) + f(a+ 2d)

f(a− d) + f(a+ 2d) = f(a) + f(a+ d)

which imply

f(a− d) + f(a+ 3d) = 2f(a+ d).

Thus we conclude that for arbitrary x and y we have

f(x) + f(y) = 2f

(
x+ y

2

)
thus f satisfies Jensen functional equation over Q, so linear.

The solution can be made to avoid appealing to Jensen’s functional equation; here is a
presentation of such a solution based on the official ones. Let d > 0 be a positive integer,
and let n be an integer. Consider the two equations

f

(
2n− 1

2d

)
+ f

(
2n+ 2

2d

)
= f

(
2n

2d

)
+ f

(
2n+ 1

2d

)
f

(
2n− 2

2d

)
+ f

(
2n+ 1

2d

)
= f

(
2n− 1

2d

)
+ f

(
2n

2d

)
Summing them and simplifying implies that

f

(
n− 1

d

)
+ f

(
n+ 1

d

)
= 2f

(n
d

)
or equivalently

f
(n
d

)
− f

(
n− 1

d

)
= f

(
n+ 1

d

)
− f

(n
d

)
.

This implies that on the set of rational numbers with denominator dividing d, the function
f is linear.

In particular, we should have f
(
n
d

)
= f(0) + n

df(1) since n
d , 0, 1 have denominators

dividing d. This is the same as saying f(q) = f(0) + q(f(1)− f(0)) for any q ∈ Q, which
is what we wanted to prove.
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§2.2 JMO 2015/5, proposed by Sungyoon Kim
Available online at https://aops.com/community/p4774099.

Problem statement

Let ABCD be a cyclic quadrilateral. Prove that there exists a point X on segment
BD such that ∠BAC = ∠XAD and ∠BCA = ∠XCD if and only if there exists a
point Y on segment AC such that ∠CBD = ∠Y BA and ∠CDB = ∠Y DA.

Both conditions are equivalent to ABCD being harmonic.
Here is a complex solution. Extend U and V and shown. Thus u = bd/a and v = bd/c.

A

B D

C

U

V

X

Note AV ∩ CU lies on the perpendicular bisector of BD unconditionally. Then X
exists as described if and only if the midpoint of BD lies on AV . In complex numbers
this is a+ v = m+ avm, or

a+
bd

c
=

b+ d

2
+

abd

c
· b+ d

2bd
⇐⇒ 2(ac+ bd) = (b+ d)(a+ c)

which is symmetric.
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§2.3 JMO 2015/6, proposed by Maria Monks Gillespie
Available online at https://aops.com/community/p4774079.

Problem statement

Steve is piling m ≥ 1 indistinguishable stones on the squares of an n× n grid. Each
square can have an arbitrarily high pile of stones. After he finished piling his stones
in some manner, he can then perform stone moves, defined as follows. Consider any
four grid squares, which are corners of a rectangle, i.e. in positions (i, k), (i, l), (j, k),
(j, l) for some 1 ≤ i, j, k, l ≤ n, such that i < j and k < l. A stone move consists of
either removing one stone from each of (i, k) and (j, l) and moving them to (i, l) and
(j, k) respectively, or removing one stone from each of (i, l) and (j, k) and moving
them to (i, k) and (j, l) respectively.

Two ways of piling the stones are equivalent if they can be obtained from one
another by a sequence of stone moves. How many different non-equivalent ways can
Steve pile the stones on the grid?

The answer is
(
m+n−1
n−1

)2. The main observation is that the ordered sequence of column
counts (i.e. the number of stones in the first, second, etc. column) is invariant under
stone moves, as does the analogous sequence of row counts.

¶ Definitions. Call these numbers (c1, c2, . . . , cn) and (r1, r2, . . . , rn) respectively, with∑
ci =

∑
ri = m. We say that the sequence (c1, . . . , cn, r1, . . . , rn) is the signature of

the configuration. These are the 2m blue and red numbers shown in the example below
(in this example we have m = 8 and n = 3).

c1 = 5 c2 = 2 c3 = 1

r1 = 3

r2 = 3

r3 = 2

Signature: (5, 2, 1; 3, 3, 2)

By stars-and-bars, the number of possible values (c1, . . . , cn) is
(
m+n−1
n−1

)
. The same is

true for (r1, . . . , rm). So if we’re just counting signatures, the total number of possible
signatures is

(
m+n−1
n−1

)2.
¶ Outline and setup. We are far from done. To show that the number of non-equivalent
ways is also this number, we need to show that signatures correspond to pilings. In other
words, we need to prove:

1. Check that signatures are invariant around moves (trivial; we did this already);

2. Check conversely that two configurations are equivalent if they have the same
signatures (the hard part of the problem); and
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3. Show that each signature is realized by at least one configuration (not immediate,
but pretty easy).

Most procedures to the second step are algorithmic in nature, but Ankan Bhattacharya
gives the following far cleaner approach. Rather than having a grid of stones, we simply
consider the multiset of ordered pairs (x, y) corresponding to the stones. Then:

• a stone move corresponds to switching two y-coordinates in two different pairs.

• we redefine the signature to be the multiset (X,Y ) of x and y coordinates which
appear. Explicitly, X is the multiset that contains ci copies of the number i for
each i.

For example, consider the earlier example which had

• Two stones each at (1, 1), (1, 2).

• One stone each at (1, 3), (2, 1), (2, 3), (3, 2).

Its signature can then be reinterpreted as

(5, 2, 1; 3, 3, 2)←→

{
X = {1, 1, 1, 1, 1, 2, 2, 3}
Y = {1, 1, 1, 2, 2, 2, 3, 3}.

In that sense, the entire grid is quite misleading!

¶ Proof that two configurations with the same signature are equivalent. The second
part is completed just because transpositions generate any permutation. To be explicit,
given two sets of stones, we can permute the labels so that the first set is (x1, y1), . . . ,
(xm, ym) and the second set of stones is (x1, y

′
1), . . . , (xm, y′m). Then we just induce the

correct permutation on (yi) to get (y′i).

¶ Proof that any signature has at least one configuration. Sort the elements of X
and Y arbitrarily (say, in non-decreasing order). Put a stone whose x-coordinate is the
ith element of X, and whose y-coordinate is the ith element of Y , for each i = 1, 2, . . . ,m.
Then this gives a stone placement of m stones with signature (X,Y ).

For example, if

X = {1, 1, 1, 1, 1, 2, 2, 3}
Y = {1, 1, 1, 2, 2, 2, 3, 3}

then placing stones at (1, 1), (1, 1), (1, 1), (1, 2), (1, 2), (2, 2), (2, 3), (3, 3) gives a valid
piling with this signature.
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