
JMO 2012 Solution Notes
Evan Chen《陳誼廷》

15 April 2024

This is a compilation of solutions for the 2012 JMO. The ideas of the
solution are a mix of my own work, the solutions provided by the competition
organizers, and solutions found by the community. However, all the writing
is maintained by me.

These notes will tend to be a bit more advanced and terse than the “official”
solutions from the organizers. In particular, if a theorem or technique is not
known to beginners but is still considered “standard”, then I often prefer to
use this theory anyways, rather than try to work around or conceal it. For
example, in geometry problems I typically use directed angles without further
comment, rather than awkwardly work around configuration issues. Similarly,
sentences like “let R denote the set of real numbers” are typically omitted
entirely.

Corrections and comments are welcome!
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§0 Problems
1. Given a triangle ABC, let P and Q be points on segments AB and AC, respectively,

such that AP = AQ. Let S and R be distinct points on segment BC such that S
lies between B and R, ∠BPS = ∠PRS, and ∠CQR = ∠QSR. Prove that P , Q,
R, S are concyclic.

2. Find all integers n ≥ 3 such that among any n positive real numbers a1, a2, . . . ,
an with

max(a1, a2, . . . , an) ≤ n · min(a1, a2, . . . , an),

there exist three that are the side lengths of an acute triangle.

3. For a, b, c > 0 prove that

a3 + 3b3

5a+ b
+

b3 + 3c3

5b+ c
+

c3 + 3a3

5c+ a
≥ 2

3
(a2 + b2 + c2).

4. Let α be an irrational number with 0 < α < 1, and draw a circle in the plane whose
circumference has length 1. Given any integer n ≥ 3, define a sequence of points
P1, P2, . . . , Pn as follows. First select any point P1 on the circle, and for 2 ≤ k ≤ n
define Pk as the point on the circle for which the length of arc Pk−1Pk is α, when
travelling counterclockwise around the circle from Pk−1 to Pk. Suppose that Pa

and Pb are the nearest adjacent points on either side of Pn. Prove that a+ b ≤ n.

5. For distinct positive integers a, b < 2012, define f(a, b) to be the number of integers
k with 1 ≤ k < 2012 such that the remainder when ak divided by 2012 is greater
than that of bk divided by 2012. Let S be the minimum value of f(a, b), where a
and b range over all pairs of distinct positive integers less than 2012. Determine S.

6. Let P be a point in the plane of 4ABC, and γ a line through P . Let A′, B′, C ′ be
the points where the reflections of lines PA, PB, PC with respect to γ intersect
lines BC, CA, AB respectively. Prove that A′, B′, C ′ are collinear.
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§1 Solutions to Day 1
§1.1 JMO 2012/1, proposed by Sungyoon Kim, Inseok Seo
Available online at https://aops.com/community/p2669111.

Problem statement

Given a triangle ABC, let P and Q be points on segments AB and AC, respectively,
such that AP = AQ. Let S and R be distinct points on segment BC such that S
lies between B and R, ∠BPS = ∠PRS, and ∠CQR = ∠QSR. Prove that P , Q, R,
S are concyclic.

Assume for contradiction that (PRS) and (QRS) are distinct. Then RS is the radical
axis of these two circles. However, AP is tangent to (PRS) and AQ is tangent to (QRS),
so point A has equal power to both circles, which is impossible since A does not lie on
line BC.
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§1.2 JMO 2012/2, proposed by Titu Andreescu
Available online at https://aops.com/community/p2669112.

Problem statement

Find all integers n ≥ 3 such that among any n positive real numbers a1, a2, . . . , an
with

max(a1, a2, . . . , an) ≤ n · min(a1, a2, . . . , an),

there exist three that are the side lengths of an acute triangle.

The answer is all n ≥ 13.
Define (Fn) as the sequence of Fibonacci numbers, by F1 = F2 = 1 and Fn+1 =

Fn + Fn−1. We will find that Fibonacci numbers show up naturally when we work
through the main proof, so we will isolate the following calculation now to make the
subsequent solution easier to read.

Claim — For positive integers m, we have Fm ≤ m2 if and only if m ≤ 12.

Proof. A table of the first 14 Fibonacci numbers is given below.

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14

1 1 2 3 5 8 13 21 34 55 89 144 233 377

By examining the table, we see that Fm ≤ m2 is true for m = 1, 2, . . . 12, and in fact
F12 = 122 = 144. However, Fm > m2 for m = 13 and m = 14.

Now it remains to prove that Fm > m2 for m ≥ 15. The proof is by induction with
base cases m = 13 and m = 14 being checked already. For the inductive step, if m ≥ 15
then we have

Fm = Fm−1 + Fm−2 > (m− 1)2 + (m− 2)2

= 2m2 − 6m+ 5 = m2 + (m− 1)(m− 5) > m2

as desired.

We now proceed to the main problem. The hypothesis max(a1, a2, . . . , an) ≤ n ·
min(a1, a2, . . . , an) will be denoted by (†).

Proof that all n ≥ 13 have the property. We first show now that every n ≥ 13
has the desired property. Suppose for contradiction that no three numbers are the sides
of an acute triangle. Assume without loss of generality (by sorting the numbers) that
a1 ≤ a2 ≤ · · · ≤ an. Then since ai−1, ai, ai+1 are not the sides of an acute triangle for
each i ≥ 2, we have that a2i+1 ≥ a2i + a2i−1; writing this out gives

a23 ≥ a22 + a21 ≥ 2a21

a24 ≥ a23 + a22 ≥ 2a21 + a21 = 3a21

a25 ≥ a24 + a23 ≥ 3a21 + 2a21 = 5a21

a26 ≥ a25 + a24 ≥ 5a21 + 3a21 = 8a21

and so on. The Fibonacci numbers appear naturally and by induction, we conclude that
a2i ≥ Fia

2
1. In particular, a2n ≥ Fna

2
1.
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However, we know max(a1, . . . , an) = an and min(a1, . . . , an) = a1, so (†) reads
an ≤ n · a1. Therefore we have Fn ≤ n2, and so n ≤ 12, contradiction!

Proof that no n ≤ 12 have the property. Assume that n ≤ 12. The above
calculation also suggests a way to pick the counterexample: we choose ai =

√
Fi for every

i. Then min(a1, . . . , an) = a1 = 1 and max(a1, . . . , an) =
√
Fn, so (†) is true as long as

n ≤ 12. And indeed no three numbers form the sides of an acute triangle: if i < j < k,
then a2k = Fk = Fk−1 + Fk−2 ≥ Fj + Fi = a2j + a2i .
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§1.3 JMO 2012/3, proposed by Titu Andreescu
Available online at https://aops.com/community/p2669114.

Problem statement

For a, b, c > 0 prove that

a3 + 3b3

5a+ b
+

b3 + 3c3

5b+ c
+

c3 + 3a3

5c+ a
≥ 2

3
(a2 + b2 + c2).

Here are two possible approaches.

¶ Cauchy-Schwarz approach. Apply Titu lemma to get∑
cyc

a3

5a+ b
=

∑
cyc

a4

5a2 + ab
≥ (a2 + b2 + c2)2∑

cyc(5a
2 + ab)

≥ a2 + b2 + c2

6

where the last step follows from the identity
∑

cyc(5a
2 + ab) ≤ 6(a2 + b2 + c2).

Similarly, ∑
cyc

b3

5a+ b
=

∑
cyc

b4

5ab+ b2
≥ (a2 + b2 + c2)2∑

cyc(5ab+ b2)
≥ a2 + b2 + c2

6

using the fact that
∑

cyc 5ab+ b2 ≤ 6(a2 + b2 + c2).
Therefore, adding the first display to three times the second display implies the result.

¶ Cauchy-Schwarz approach. The main magical claim is:

Claim — We have
a3 + 3b3

5a+ b
≥ 25

36
b2 − 1

36
a2.

Proof. Let x = a/b > 0. The desired inequality is equivalent to

x3 + 3

5x+ 1
≥ 25− x2

36
.

However,

36(x3 + 3)− (5x+ 1)(25− x2) = 41x3 + x2 − 125x+ 83

= (x− 1)2(41x+ 83) ≥ 0.

Sum the claim cyclically to finish.

Remark (Derivation of the main claim). The overall strategy is to hope for a constant k
such that

a3 + 3b3

5a+ b
≥ ka2 +

(
2

3
− k

)
b2.

is true. Letting x = a/b as above and expanding, we need a value k such that the cubic
polynomial

P (x) := (x3+3)−(5x+1)

(
kx2 +

(
2

3
− k

))
= (1−5k)x3−kx2+

(
5k − 10

3

)
x+

(
k +

7

3

)
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is nonnegative everywhere. Since P (1) = 0 necessarily, in order for P (1− ε) and P (1+ ε) to
both be nonnegative (for small ε), the polynomial P must have a double root at 1, meaning
the first derivative P ′(1) = 0 needs to vanish. In other words, we need

3(1− 5k)− 2k +

(
5k − 10

3

)
= 0.

Solving gives k = −1/36. One then factors out the repeated root (x− 1)2 from the resulting
P .
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§2 Solutions to Day 2
§2.1 JMO 2012/4, proposed by Sam Vandervelde
Available online at https://aops.com/community/p2669956.

Problem statement

Let α be an irrational number with 0 < α < 1, and draw a circle in the plane whose
circumference has length 1. Given any integer n ≥ 3, define a sequence of points
P1, P2, . . . , Pn as follows. First select any point P1 on the circle, and for 2 ≤ k ≤ n
define Pk as the point on the circle for which the length of arc Pk−1Pk is α, when
travelling counterclockwise around the circle from Pk−1 to Pk. Suppose that Pa and
Pb are the nearest adjacent points on either side of Pn. Prove that a+ b ≤ n.

No points coincide since α is irrational.
Assume for contradiction that n < a+ b < 2n. Then it follows that

PnPa+b−n ‖ PaPb

as shown below.

Pa Pb

Pn Pa+b−n

Pa Pb

Pa+b−n Pn

This is an obvious contradiction since then Pa+b−n is contained in the arc P̆aPb of the
circle through Pn.

8

http://web.evanchen.cc
https://aops.com/community/p2669956


JMO 2012 Solution Notes web.evanchen.cc, updated 15 April 2024

§2.2 JMO 2012/5, proposed by Warut Suksompong
Available online at https://aops.com/community/p2669967.

Problem statement

For distinct positive integers a, b < 2012, define f(a, b) to be the number of integers
k with 1 ≤ k < 2012 such that the remainder when ak divided by 2012 is greater
than that of bk divided by 2012. Let S be the minimum value of f(a, b), where a
and b range over all pairs of distinct positive integers less than 2012. Determine S.

The answer is S = 502 (not 503!).

Claim — If gcd(k, 2012) = 1, then necessarily either k or 2012 − k will counts
towards S.

Proof. First note that both ak, bk are nonzero modulo 2012. Note also that ak 6≡ bk
(mod 2012).

So if ra is the remainder of ak (mod 2012), then 2012−ra is the remainder of a(2012−k)
(mod 2012) Similarly we can consider rb and 2012− rb. As mentioned already, we have
ra 6= rb. So either ra > rb or 2012− ra > 2012− rb.

This implies S ≥ 1
2ϕ(2012) = 502.

But this can actually be achieved by taking a = 4 and b = 1010, since

• If k is even, then ak ≡ bk (mod 2012) so no even k counts towards S; and

• If k ≡ 0 (mod 503), then ak ≡ 0 (mod 2012) so no such k counts towards S.

This gives the final answer S ≥ 502.

Remark. A similar proof works with 2012 replaced by any n and will give an answer of
1
2ϕ(n). For composite n, one uses the Chinese remainder theorem to pick distinct a and b
not divisible by n such that lcm(a− b, a) = n.
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§2.3 JMO 2012/6, proposed by Titu Andreescu, Cosmin Pohoata
Available online at https://aops.com/community/p2669960.

Problem statement

Let P be a point in the plane of 4ABC, and γ a line through P . Let A′, B′, C ′ be
the points where the reflections of lines PA, PB, PC with respect to γ intersect
lines BC, CA, AB respectively. Prove that A′, B′, C ′ are collinear.

We present three solutions.

¶ First solution (complex numbers). Let p = 0 and set γ as the real line. Then A′ is
the intersection of bc and pa. So, we get

a′ =
a(bc− bc)

(b− c)a− (b− c)a
.

A

B C

P

A′

Note that
a′ =

a(bc− bc)

(b− c)a− (b− c)a
.

Thus it suffices to prove

0 = det


a(bc−bc)

(b−c)a−(b−c)a

a(bc−bc)

(b−c)a−(b−c)a
1

b(ca−ca)

(c−a)b−(c−a)b

b(ca−ca)

(c−a)b−(c−a)b
1

c(ab−ab)

(a−b)c−(a−b)c

c(ab−ab)

(a−b)c−(a−b)c
1

 .

This is equivalent to

0 = det

a(bc− bc) a(bc− bc) (b− c)a− (b− c)a

b(ca− ca) b(ca− ca) (c− a)b− (c− a)b

c(ab− ab) c(ab− ab) (a− b)c− (a− b)c

 .

This determinant has the property that the rows sum to zero, and we’re done.

Remark. Alternatively, if you don’t notice that you could just blindly expand:∑
cyc

((b− c)a− (b− c)a) · −det
[
b b
c c

]
(ca− ca)

(
ab− ab

)
= (bc− cb)(ca− ca)(ab− ab)

∑
cyc

(
ab− ac+ ca− ba

)
= 0.
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¶ Second solution (Desargues involution). We let C ′′ = A′B′∩AB. Consider complete
quadrilateral ABCA′B′C ′′C. We see that there is an involutive pairing τ at P swapping
(PA,PA′), (PB,PB′), (PC,PC ′′). From the first two, we see τ coincides with reflection
about `, hence conclude C ′′ = C.

¶ Third solution (barycentric), by Catherine Xu. We will perform barycentric co-
ordinates on the triangle PCC ′, with P = (1, 0, 0), C ′ = (0, 1, 0), and C = (0, 0, 1).
Set a = CC ′, b = CP , c = C ′P as usual. Since A, B, C ′ are collinear, we will define
A = (p : k : q) and B = (p : ` : q).

Claim — Line γ is the angle bisector of ∠APA′, ∠BPB′, and ∠CPC ′.

Proof. Since A′P is the reflection of AP across γ, etc.

Thus B′ is the intersection of the isogonal of B with respect to ∠P with the line CA;
that is,

B′ =

(
p

k

b2

`
:
b2

`
:
c2

q

)
.

Analogously, A′ is the intersection of the isogonal of A with respect to ∠P with the line
CB; that is,

A′ =

(
p

`

b2

k
:
b2

k
:
c2

q

)
.

The ratio of the first to third coordinate in these two points is both b2pq : c2k`, so it
follows A′, B′, and C ′ are collinear.

Remark (Problem reference). The converse of this problem appears as problem 1052
attributed S. V. Markelov in the book Geometriya: 9–11 Klassy: Ot Uchebnoy Zadachi k
Tvorcheskoy, 1996, by I. F. Sharygin.
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