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This is a compilation of solutions for the 2025 IMO. The ideas of the
solution are a mix of my own work, the solutions provided by the competition
organizers, and solutions found by the community. However, all the writing
is maintained by me.

These notes will tend to be a bit more advanced and terse than the “official”
solutions from the organizers. In particular, if a theorem or technique is not
known to beginners but is still considered “standard”, then I often prefer to
use this theory anyways, rather than try to work around or conceal it. For
example, in geometry problems I typically use directed angles without further
comment, rather than awkwardly work around configuration issues. Similarly,
sentences like “let R denote the set of real numbers” are typically omitted
entirely.

Corrections and comments are welcome!
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§0 Problems
1. A line in the plane is called sunny if it is not parallel to any of the x–axis, the

y–axis, or the line x+ y = 0.
Let n ≥ 3 be a given integer. Determine all nonnegative integers k such that there
exist n distinct lines in the plane satisfying both of the following:

• for all positive integers a and b with a+ b ≤ n+ 1, the point (a, b) lies on at
least one of the lines; and

• exactly k of the n lines are sunny.

2. Let Ω and Γ be circles with centres M and N , respectively, such that the radius of
Ω is less than the radius of Γ. Suppose Ω and Γ intersect at two distinct points A
and B. Line MN intersects Ω at C and Γ at D, so that C, M , N , D lie on MN in
that order. Let P be the circumcenter of triangle ACD. Line AP meets Ω again at
E 6= A and meets Γ again at F 6= A. Let H be the orthocenter of triangle PMN .
Prove that the line through H parallel to AP is tangent to the circumcircle of
triangle BEF .

3. A function f : N → N is said to be bonza if

f(a) divides ba − f(b)f(a)

for all positive integers a and b.
Determine the smallest real constant c such that f(n) ≤ cn for all bonza functions
f and all positive integers n.

4. An infinite sequence a1, a2, . . . consists of positive integers has each of which has
at least three proper divisors. Suppose that for each n ≥ 1, an+1 is the sum of the
three largest proper divisors of an. Determine all possible values of a1.

5. Alice and Bazza are playing the inekoalaty game, a two‑player game whose rules
depend on a positive real number λ which is known to both players. On the nth
turn of the game (starting with n = 1) the following happens:

• If n is odd, Alice chooses a nonnegative real number xn such that

x1 + x2 + · · ·+ xn ≤ λn.

• If n is even, Bazza chooses a nonnegative real number xn such that

x21 + x22 + · · ·+ x2n ≤ n.

If a player cannot choose a suitable xn, the game ends and the other player wins.
If the game goes on forever, neither player wins. All chosen numbers are known to
both players.
Determine all values of λ for which Alice has a winning strategy and all those for
which Bazza has a winning strategy.

6. Consider a 2025× 2025 grid of unit squares. Matilda wishes to place on the grid
some rectangular tiles, possibly of different sizes, such that each side of every tile
lies on a grid line and every unit square is covered by at most one tile.
Determine the minimum number of tiles Matilda needs to place so that each row
and each column of the grid has exactly one unit square that is not covered by any
tile.
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§1 Solutions to Day 1
§1.1 IMO 2025/1, proposed by Linus Tang (USA)
Available online at https://aops.com/community/p35332003.

Problem statement

A line in the plane is called sunny if it is not parallel to any of the x–axis, the y–axis,
or the line x+ y = 0.

Let n ≥ 3 be a given integer. Determine all nonnegative integers k such that there
exist n distinct lines in the plane satisfying both of the following:

• for all positive integers a and b with a+ b ≤ n+ 1, the point (a, b) lies on at
least one of the lines; and

• exactly k of the n lines are sunny.

The answer is 0, 1, or 3 sunny lines.
In what follows, we draw the grid as equilateral instead of a right triangle; this has no

effect on the problem statement but is more symmetric.
We say a long line is one of the three lines at the edge of the grid, i.e. one of the

(non-sunny) lines passing through n points. The main claim is the following.

Claim — If n ≥ 4, any set of n lines must have at least one long line.

Proof. Consider the 3(n−1) points on the outer edge of the grid. If there was no long line,
each of the n lines passes through at most two such points. So we obtain 2n ≥ 3(n− 1),
which forces n ≤ 3.

Hence, by induction we may repeatedly delete a long line without changing the number
of sunny lines until n = 3 (and vice-versa: given a construction for smaller n we can
increase n by one and add a long line).

We now classify all the ways to cover the 1 + 2 + 3 = 6 points in an n = 3 grid with 3
lines.

Long line present No long line

• If there is a long line (say, the red one in the figure), the remaining 1+2 = 3 points
(circled in blue) are covered with two lines. One of the lines passes through 2 points
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and must not be sunny; the other line may or may not be sunny. Hence in this
case the possible counts of sunny lines are 0 or 1.

• If there is no long line, each of the three lines passes through at most 2 points. But
there are 6 total lines, so in fact each line must pass through exactly two points.
The only way to do this is depicted in the figure in the right. In this case there are
3 sunny lines.

This proves that 0, 1, 3 are the only possible answers.

Remark. The concept of a sunny line is not that important to the problem. The proof
above essentially classifies all the ways to cover the 1 + 2 + · · ·+ n points with exactly n
lines. Namely, one should repeatedly take a long line and decrease n until n = 3, and then
pick one of the finitely many cases for n = 3. The count of sunny lines just happens to be
whatever is possible for n = 3, since long lines are not sunny.
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§1.2 IMO 2025/2, proposed by Tran Quang Hung (VNM)
Available online at https://aops.com/community/p35332018.

Problem statement

Let Ω and Γ be circles with centres M and N , respectively, such that the radius of
Ω is less than the radius of Γ. Suppose Ω and Γ intersect at two distinct points A
and B. Line MN intersects Ω at C and Γ at D, so that C, M , N , D lie on MN in
that order. Let P be the circumcenter of triangle ACD. Line AP meets Ω again at
E 6= A and meets Γ again at F 6= A. Let H be the orthocenter of triangle PMN .

Prove that the line through H parallel to AP is tangent to the circumcircle of
triangle BEF .

Throughout the solution, we define

α := ]DCA = ]BCD =⇒ ]PAD = ]CAB = 90◦ − α

β := ]ADC = ]CDB =⇒ ]CAP = ]BAD = 90◦ − β.

Ignore the points H, M , N for now and focus on the remaining ones.

Claim — We have CE ‖ AD and DF ‖ AC.

Proof. ]AEC = ]ABC = ]CAB = 90◦ − α.

Hence, if we let A′ := CE ∩DF , we have a parallelogram ACA′D. Note in particular
that BA′ ‖ CD.
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Next, let T denote the circumcenter of 4A′EF . (This will be the tangency point later
in the problem.)

Claim — Point T also lies on BA′ and is also the arc midpoint of ÊF on (BEF ).

Proof. We compute the angles of 4A′EF :

]FEA′ = ]AEC = ]ABC = ]CAB = 90◦ − α

]A′FE = ]DFA = ]DBA = ]BAD = 90◦ − β

]EA′F = α+ β.

Then, since T is the circumcenter, it follows that:

]EA′T = ]90◦ − ]A′FE = β = ]A′CD = ]CA′B.

This shows that T lies on BA′.
Also, we have ]ETF = 2]EA′F = 2(α+ β) and

]EBF = ]EBA+ ]ABF = ]ECA+ ]ADF
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= ]A′CA+ ]ADA′ = (α+ β) + (α+ β) = 2(α+ β)

which proves that T also lies on AB′.

We then bring M and N into the picture as follows:

Claim — Point T lies on both lines ME and NF .

Proof. To show that F , T , N are collinear, note that 4FEA′ ∼ 4FAD via a homothety
at F . This homothety maps T to N .

We now deal with point H using two claims.

Claim — We have MH ‖ AD and NH ‖ AC.

Proof. Note that MH ⊥ PN , but PN is the perpendicular bisector of AD, so in fact
MH ‖ AD. Similarly, NH ‖ AC.

Claim — Lines MH and NH bisect ∠NMT and ∠MNT . In fact, point H is the
incenter of 4TMN , and ]NTH = ]HTM = 90◦ − (α+ β).

Proof. Hence, ]HMN = ]A′CD = ]ADC = β. But ]TMN = ]CME = 2]CAE =
−2(90◦ − 2β) = 2β. That proves MH bisects ∠NMT ; the other one is similar.

To show that H is an incenter (rather than an excenter) and get the last angle equality,
we need to temporarily undirect our angles. Assume WLOG that 4ACD is directed
counterclockwise. The problem condition that C and D are the farther intersections of
line MN mean that ∠NHM = ∠CAD > 90◦. We are also promised C, M , N , D are
collinear in that order. Hence the reflections of line MN over lines MH and NH, which
meet at T , should meet at a point for which T lies on the same side as H. In other words,
4MTN is oriented counterclockwise and contains H.

Working with undirected α = ∠DCA and β = ∠ADC with α+ β < 90◦,

∠NTH = ∠HTM =
1

2
∠NTM =

1

2
(180◦ − 2(α+ β)) = 90◦ − (α+ β).

This matches the claim and finishes the result.

Now
]NFA = 90◦ − ]ADF = 90◦ − (α+ β) = ]NTH

so HT ‖ AP . And since TE = TF , we have the tangency requested too now, as desired.

Remark. There are many other ways to describe the point T . For example, AMTN is a
parallelogram and MBTN is an isosceles trapezoid. In coordination, we joked that it was
impossible to write a false conjecture.
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§1.3 IMO 2025/3, proposed by Lorenzo Sarria (COL)
Available online at https://aops.com/community/p35332016.

Problem statement

A function f : N → N is said to be bonza if

f(a) divides ba − f(b)f(a)

for all positive integers a and b.
Determine the smallest real constant c such that f(n) ≤ cn for all bonza functions

f and all positive integers n.

The answer is c = 4.
Let P (a, b) denote the given statement f(a) | ba − f(b)f(a).

Claim — We have f(n) | nn for all n.

Proof. Take P (n, n).

Claim — Unless f = id, we have f(p) = 1 for all odd primes p.

Proof. Consider any prime q with f(q) > 1. Then f(q) is a power of q, and for each n
we get

P (q, n) =⇒ q | f(q) | nq − f(n)f(q).

Fermat’s little theorem now gives nq ≡ n (mod q) and f(n)f(q) ≡ f(n) (mod q) (since
f(q) is a power of q), and therefore q | n− f(n). Hence, unless f is the identity function,
only finitely many q could have f(q) > 1.

Now let p be any odd prime, and let q be a large prime such that q 6≡ 1 (mod p)
(possible for all p > 2, say by Dirichlet). Then

P (p, q) =⇒ f(p) | qp − 1p.

The RHS is qp − 1 ≡ q − 1 6≡ 0 (mod p), so f(p) = 1.

Claim — We have f(n) | 2∞ for all n.

Proof. If p | f(n) is odd then P (n, p) gives p | f(n) | pn − 1n, contradiction.

(In particular, we now know f(n) = 1 for all odd n, though we don’t use this.)

Claim — We have f(n) ≤ 2ν2(n)+2 for all n.

Proof. Consider P (n, 5) =⇒ f(n) | 5n − 1n. It’s well-known that ν2(5n − 1) = ν2(n) + 2
for all n.
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This immediately shows f(n) ≤ 4n for all n, hence c = 4 in the problem statement works.
For the construction, the simplest one seems to be

f(n) =


1 n odd
16 n = 4

2 n even, n 6= 4

which is easily checked to work and has f(4) = 16.

Remark. With a little more case analysis we can classify all functions f . The two trivial
solutions are f(n) = n and f(n) = 1; the others are described by writing f(n) = 2e(n) for
any function e satisfying

• e(n) = 0 for odd n;

• 1 ≤ e(2) ≤ 2;

• 1 ≤ e(n) ≤ ν2(n) + 2 for even n > 2.

This basically means that there are almost no additional constraints beyond what is suggested
by the latter two claims.
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§2 Solutions to Day 2
§2.1 IMO 2025/4, proposed by Paulius Aleknavičius (LIT)
Available online at https://aops.com/community/p35347364.

Problem statement

An infinite sequence a1, a2, . . . consists of positive integers has each of which has
at least three proper divisors. Suppose that for each n ≥ 1, an+1 is the sum of the
three largest proper divisors of an. Determine all possible values of a1.

The answer is a1 = 12e · 6 · ` for any e, ` ≥ 0 with gcd(`, 10) = 1.
Let S denote the set of positive integers with at least three divisors. For x ∈ S, let

ψ(x) denote the sum of the three largest ones, so that ψ(an) = an+1.

¶ Proof that all such a1 work. Let x = 12e · 6 · ` ∈ S with gcd(`, 10) = 1. As
1
2 + 1

3 + 1
4 = 13

12 , we get

ψ(x) =

{
x e = 0
13
12x e > 0

so by induction on the value of e we see that ψ(x) ∈ S (the base e = 0 coming from ψ
fixing x).

¶ Proof that all a1 are of this form. In what follows x is always an element of S, not
necessarily an element of the sequence.

Claim — Let x ∈ S. If 2 | ψ(x) then 2 | x.

Proof. If x is odd then every divisor of x is odd, so f(x) is the sum of three odd
numbers.

Claim — Let x ∈ S. If 6 | ψ(x) then 6 | x.

Proof. We consider only x even because of the previous claim. We prove the contrapositive
that 3 - x =⇒ 3 - ψ(x).

• If 4 | x, then letting d be the third largest proper divisor of x,

ψ(x) =
x

2
+
x

4
+ d =

3

4
x+ d ≡ d 6≡ 0 (mod 3).

• Otherwise, let p | x be the smallest prime dividing x, with p > 3. If the third
smallest nontrivial divisor of x is 2p, then

ψ(x) =
x

2
+
x

p
+

x

2p
=

3

2p
x+

x

2
≡ x

2
6≡ 0 (mod 3).

If the third smallest nontrivial divisor of x is instead an odd prime q, then

ψ(x) =
x

2
+
x

p
+
x

q
≡ 1 + 0 + 0 ≡ 1 (mod 2).
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To tie these two claims into the problem, we assert:

Claim — Every ai must be divisible by 6.

Proof. The idea is to combine the previous two claims (which have no dependence on
the sequence) with a size argument.

• For odd x ∈ S note that ψ(x) <
(
1
3 + 1

5 + 1
7

)
x < x and ψ(x) is still odd. So if any

ai is odd the sequence is strictly decreasing and that’s impossible. Hence, we may
assume a1, a2, . . . are all even.

• If x ∈ S is even but 3 - x then ψ(x) <
(
1
2 + 1

4 + 1
5

)
x < x and ψ(x) is still not

a multiple of 3. So if any ai is not divisible by 3 the sequence is again strictly
decreasing.

On the other hand, if x is a multiple of 6, we have the following formula for ψ(x):

ψ(x) =


13
12x 4 | x
31
30x 4 - x but 5 | x
x 4 - x and 5 - x.

Looking back on our sequence of ai (which are all multiples of 6), the center case cannot
happen with our ai, because 31

30x is odd when x ≡ 2 (mod 4). Hence in actuality

an+1 =
13

12
an or an+1 = an

for every n.
Let T be the smallest index such that aT = aT+1 = aT+2 = · · · (it must exist because

we cannot multiply by 13
12 forever). Then we can exactly describe the sequence by

an = a1 ·
(
13

12

)min(n,T )−1

.

Hence a1 =
(
12
13

)T−1
aT , and since aT is a multiple of 6 not divisible by 4 or 5, it follows

a1 has the required form.
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§2.2 IMO 2025/5, proposed by Massimiliano Foschi, Leonardo Franchi (ITA)
Available online at https://aops.com/community/p35341177.

Problem statement

Alice and Bazza are playing the inekoalaty game, a two‑player game whose rules
depend on a positive real number λ which is known to both players. On the nth
turn of the game (starting with n = 1) the following happens:

• If n is odd, Alice chooses a nonnegative real number xn such that

x1 + x2 + · · ·+ xn ≤ λn.

• If n is even, Bazza chooses a nonnegative real number xn such that

x21 + x22 + · · ·+ x2n ≤ n.

If a player cannot choose a suitable xn, the game ends and the other player wins. If
the game goes on forever, neither player wins. All chosen numbers are known to
both players.

Determine all values of λ for which Alice has a winning strategy and all those for
which Bazza has a winning strategy.

The answer is that Alice has a winning strategy for λ > 1/
√
2, and Bazza has a winning

strategy for λ < 1/
√
2. (Neither player can guarantee winning for λ = 1/

√
2.)

We divide the proof into two parts.

¶ Alice’s strategy when λ ≥ 1/
√
2. Consider the strategy where Alice always plays

x2i+1 = 0 for i = 0, . . . , k − 1.
In this situation, when n = 2k + 1 we have

2k∑
1

xi = 0 + x2 + 0 + x4 + · · ·+ 0 + x2k

≤ k ·

√
x22 + · · ·+ x22k

k
=

√
2 · k < λ · (2k + 1)

and so the choices for x2k+1 are

x2k+1 ∈ [0, λ · (2k + 1)−
√
2k]

which is nonempty. Hence Alice can’t ever lose with this strategy.
But suppose further λ > 1√

2
; we show Alice can win. Choose k large enough that

√
2 · k < λ · (2k + 1)−

√
2k + 2.

Then on the (2k+1)st turn, Alice can (after playing 0 on all earlier turns) play a number
greater than

√
2k + 2 and cause Bob to lose.
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¶ Bob strategy when λ ≤ 1/
√
2. Consider the strategy where Bob always plays

x2i+2 =
√
2− x22i+1 for all i = 0, . . . , k − 1 (i.e. that is, the largest possible value Bob

can play).
To analyze Bob’s choices on each of his turns, we first need to estimate x2k+1. We do

this by writing

λ · (2k + 1) ≥ x1 + x2 + · · ·+ x2k+1

=

(
x1 +

√
2− x21

)
+

(
x3 +

√
2− x23

)
+ · · ·+

(
x2k−1 +

√
2− x22k

)
+ x2k+1

≥
√
2 + · · ·+

√
2︸ ︷︷ ︸

k times

+ x2k+1 =
√
2 · k + x2k+1

where we have used the fact that t+
√
2− t2 ≥ 2 for all t ≥ 0. This means that

x2k+1 ≤ λ · (2k + 1)−
√
2k <

√
2.

And x21 + x22 + · · · + x22k + x22k+1 = (2 + · · · + 2) + x22k+1, Bob can indeed choose
x2k+2 =

√
2− x22k+1 and always has a move.

But suppose further λ < 1/
√
2. Then the above calculation also shows that Alice

couldn’t have made a valid choice for large enough k, since λ · (2k + 1) −
√
2k < 0 for

large k.

Remark. In the strategies above, we saw that Alice prefers to always play 0 and Bob prefers
to always play as large as possible. One could consider what happens in the opposite case:

• If Alice tries to always play the largest number possible, her strategy still wins for
λ > 1.

• If Bob tries to always play 0, Alice can win no matter the value for λ > 0.
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§2.3 IMO 2025/6, proposed by Zhao Yu Ma and David Lin Kewei (SGP)
Available online at https://aops.com/community/p35341197.

Problem statement

Consider a 2025 × 2025 grid of unit squares. Matilda wishes to place on the grid
some rectangular tiles, possibly of different sizes, such that each side of every tile
lies on a grid line and every unit square is covered by at most one tile.

Determine the minimum number of tiles Matilda needs to place so that each row
and each column of the grid has exactly one unit square that is not covered by any
tile.

The answer is 2112 = 2025+2·45−3. In general, the answer turns out to be dn+ 2
√
n− 3e,

but when n is not a perfect square the solution is more complicated.

¶ Construction. To be added.

¶ Bound. To be added.

Remark. Ironically, the construction obtaining the answer in the floor pattern at Sunshine
Coast airport, the closest airport to the site of the exam. See this image or this image.
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