Team Selection Test for the $65^{\text {th }}$ International Mathematical Olympiad and $13^{\text {th }}$ European Girls Math Olympiad

United States of America

Day I

Thursday, December 7, 2023

Time limit: 4.5 hours. Each problem is worth 7 points. You may keep the exam problems, but do not discuss them with anyone until Monday, December 11 at noon Eastern time.

TST 1. Find the smallest constant $C>1$ such that the following statement holds: for every integer $n \geq 2$ and sequence of non-integer positive real numbers $a_{1}, a_{2}, \ldots, a_{n}$ satisfying

$$
\frac{1}{a_{1}}+\frac{1}{a_{2}}+\cdots+\frac{1}{a_{n}}=1
$$

it's possible to choose positive integers b_{i} such that
(i) for each $i=1,2, \ldots, n$, either $b_{i}=\left\lfloor a_{i}\right\rfloor$ or $b_{i}=\left\lfloor a_{i}\right\rfloor+1$; and
(ii) we have

$$
1<\frac{1}{b_{1}}+\frac{1}{b_{2}}+\cdots+\frac{1}{b_{n}} \leq C
$$

(Here $\lfloor\bullet\rfloor$ denotes the floor function, as usual.)

TST 2. Let $A B C$ be a triangle with incenter I. Let segment $A I$ intersect the incircle of triangle $A B C$ at point D. Suppose that line $B D$ is perpendicular to line $A C$. Let P be a point such that $\angle B P A=\angle P A I=90^{\circ}$. Point Q lies on segment $B D$ such that the circumcircle of triangle $A B Q$ is tangent to line $B I$. Point X lies on line $P Q$ such that $\angle I A X=\angle X A C$. Prove that $\angle A X P=45^{\circ}$.

TST 3. Let $n>k \geq 1$ be integers and let p be a prime dividing $\binom{n}{k}$. Prove that the k-element subsets of $\{1, \ldots, n\}$ can be split into p classes of equal size, such that any two subsets with the same sum of elements belong to the same class.

Team Selection Test for the $65^{\text {th }}$ International Mathematical Olympiad and $13^{\text {th }}$ European Girls Math Olympiad

United States of America

Day II
Thursday, January 11, 2024

Time limit: 4.5 hours. Each problem is worth 7 points. You may keep the exam problems, but do not discuss them with anyone until Monday, January 15 at noon Eastern time.

TST 4. Find all integers $n \geq 2$ for which there exists a sequence of $2 n$ pairwise distinct points $\left(P_{1}, \ldots, P_{n}, Q_{1}, \ldots, Q_{n}\right)$ in the plane satisfying the following four conditions:
(i) no three of the $2 n$ points are collinear;
(ii) $\quad P_{i} P_{i+1} \geq 1$ for all $i=1,2, \ldots, n$, where $P_{n+1}=P_{1}$;
(iii) $Q_{i} Q_{i+1} \geq 1$ for all $i=1,2, \ldots, n$, where $Q_{n+1}=Q_{1}$; and
(iv) $\quad P_{i} Q_{j} \leq 1$ for all $i=1,2, \ldots, n$ and $j=1,2, \ldots, n$.

TST 5. Suppose $a_{1}<a_{2}<\cdots<a_{2024}$ is an arithmetic sequence of positive integers, and $b_{1}<b_{2}<\cdots<b_{2024}$ is a geometric sequence of positive integers. Find the maximum possible number of integers that could appear in both sequences, over all possible choices of the two sequences.

TST 6. Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that for all real numbers x and y,

$$
f(x f(y))+f(y)=f(x+y)+f(x y)
$$

