Team Selection Test for the $\mathbf{6 2}^{\text {nd }}$ International Mathematical Olympiad

United States of America

February 25, 2021

Time limit: 4.5 hours. Each problem is worth 7 points. You may keep the exam problems, but do not discuss them with anyone until Monday, March 1 at noon Eastern time.

IMO TST 1. Determine all integers $s \geq 4$ for which there exist positive integers a, b, c, d such that $s=a+b+c+d$ and s divides $a b c+a b d+a c d+b c d$.

IMO TST 2. Points $A, V_{1}, V_{2}, B, U_{2}, U_{1}$ lie fixed on a circle Γ, in that order, and such that $B U_{2}>A U_{1}>B V_{2}>A V_{1}$.
Let X be a variable point on the arc $V_{1} V_{2}$ of Γ not containing A or B. Line $X A$ meets line $U_{1} V_{1}$ at C, while line $X B$ meets line $U_{2} V_{2}$ at D. Let O and ρ denote the circumcenter and circumradius of $\triangle X C D$, respectively.
Prove there exists a fixed point K and a real number c, independent of X, for which $O K^{2}-\rho^{2}=c$ always holds regardless of the choice of X.

IMO TST 3. Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ that satisfy the inequality

$$
f(y)-\left(\frac{z-y}{z-x} f(x)+\frac{y-x}{z-x} f(z)\right) \leq f\left(\frac{x+z}{2}\right)-\frac{f(x)+f(z)}{2}
$$

for all real numbers $x<y<z$.

