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11 December 2023

This is a compilation of solutions for the 2018 IMO. Some of the solutions
are my own work, but many are from the official solutions provided by the
organizers (for which they hold any copyrights), and others were found by
users on the Art of Problem Solving forums.

These notes will tend to be a bit more advanced and terse than the “official”
solutions from the organizers. In particular, if a theorem or technique is not
known to beginners but is still considered “standard”, then I often prefer to
use this theory anyways, rather than try to work around or conceal it. For
example, in geometry problems I typically use directed angles without further
comment, rather than awkwardly work around configuration issues. Similarly,
sentences like “let R denote the set of real numbers” are typically omitted
entirely.

Corrections and comments are welcome!
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§0 Problems
1. Let Γ be the circumcircle of acute triangle ABC. Points D and E lie on segments

AB and AC, respectively, such that AD = AE. The perpendicular bisectors of BD
and CE intersect the minor arcs AB and AC of Γ at points F and G, respectively.
Prove that the lines DE and FG are parallel.

2. Find all integers n ≥ 3 for which there exist real numbers a1, a2, . . . , an satisfying

aiai+1 + 1 = ai+2

for i = 1, 2, . . . , n, where indices are taken modulo n.

3. An anti-Pascal triangle is an equilateral triangular array of numbers such that,
except for the numbers in the bottom row, each number is the absolute value of
the difference of the two numbers immediately below it. For example, the following
array is an anti-Pascal triangle with four rows which contains every integer from 1
to 10.

4

2 6

5 7 1

8 3 10 9

Does there exist an anti-Pascal triangle with 2018 rows which contains every integer
from 1 to 1 + 2 + · · ·+ 2018?

4. A site is any point (x, y) in the plane for which x, y ∈ {1, . . . , 20}. Initially, each of
the 400 sites is unoccupied. Amy and Ben take turns placing stones on unoccupied
sites, with Amy going first; Amy has the additional restriction that no two of her
stones may be at a distance equal to

√
5. They stop once either player cannot move.

Find the greatest K such that Amy can ensure that she places at least K stones.

5. Let a1, a2, . . . be an infinite sequence of positive integers, and N a positive integer.
Suppose that for all integers n ≥ N , the expression

a1
a2

+
a2
a3

+ · · ·+ an−1

an
+

an
a1

is an integer. Prove that (an) is eventually constant.

6. A convex quadrilateral ABCD satisfies AB · CD = BC ·DA. Point X lies inside
ABCD so that

∠XAB = ∠XCD and ∠XBC = ∠XDA.

Prove that ∠BXA+ ∠DXC = 180◦.
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§1 Solutions to Day 1
§1.1 IMO 2018/1, proposed by Silouanos Brazitikos, Vangelis Psyxas,

Michael Sarantis (HEL)
Available online at https://aops.com/community/p10626500.

Problem statement

Let Γ be the circumcircle of acute triangle ABC. Points D and E lie on segments
AB and AC, respectively, such that AD = AE. The perpendicular bisectors of BD
and CE intersect the minor arcs AB and AC of Γ at points F and G, respectively.
Prove that the lines DE and FG are parallel.

We present a synthetic solution from the IMO shortlist as well as a complex numbers
approach. We also outline a trig solution (the one I found at IMO), and a fourth solution
from Derek Liu.

¶ Synthetic solution (from Shortlist). Construct parallelograms AXFD and AEGY ,
noting that X and Y lie on Γ. As XF ‖ AB we can let M denote the midpoint of minor
arcs ‘XF and ÂB (which coincide). Define N similarly.

A

B C

F

M

N

G

D

E

X

Y

Observe that XF = AD = AE = Y G, so arcs ‘XF and Ŷ G have equal measure; hence
arcs ‘MF and ‘NG have equal measure; therefore MN ‖ FG.

Since MN and DE are both perpendicular to the ∠A bisector, so we’re done.

¶ Complex numbers solution. Let b, c, f , g, a be as usual. Note that

d− a =

(
2 · f + a+ b− abf

2
− b

)
− a = f − ab

f

e− a = g − ac

g

3

http://web.evanchen.cc
https://aops.com/community/p10626500


IMO 2018 Solution Notes web.evanchen.cc, updated 11 December 2023

We are given AD = AE from which one deduces(
e− a

d− a

)2

=
c

b
=⇒ (g2 − ac)2

(f2 − ab)2
=

g2c

f2b

=⇒ bc(bg2 − cf2)a2 = g2f4c− f2g4b = f2g2(f2c− g2b)

=⇒ bc · a2 = (fg)2 =⇒
(
−fg

a

)2

= bc.

Since −fg
a is the point X on the circle with AX ⊥ FG, we conclude FG is either parallel

or perpendicular to the ∠A-bisector; it must the latter since the ∠A-bisector separates
the two minor arcs.

¶ Trig solution (outline). Let ` denote the ∠A bisector. Fix D and F . We define the
phantom point G′ such that FG′ ⊥ ` and E′ on side AC such that GE′ = GC.

Claim (Converse of the IMO problem) — We have AD = AE′, so that E = E′.

Proof. Since FG′ ⊥ `, one can deduce ∠FBD = 1
2C + x and ∠GCA = 1

2B + x for some
x. (One fast way to see this is to note that FG ‖ MN where M and N are in the first
solution.) Then ∠FAB = 1

2C − x and ∠GAC = 1
2B − x.

Let R be the circumradius. Now, by the law of sines,

BF = 2R sin
(
1

2
C − x

)
.

From there we get

BD = 2 ·BF cos
(
1

2
C + x

)
= 4R cos

(
1

2
C + x

)
sin

(
1

2
C − x

)
DA = AB −BD = 2R sinC − 4R cos

(
1

2
C + x

)
sin

(
1

2
C − x

)
= 2R

[
sinC − 2 cos

(
1

2
C + x

)
sin

(
1

2
C − x

)]
= 2R [sinC − (sinC − sin 2x)] = 2R sin 2x.

A similar calculation gives AE′ = 2R sin 2x as needed.

Thus, FG′ ‖ DE, so G = G′ as well. This concludes the proof.

¶ Synthetic solution from Derek Liu. Let lines FD and GE intersect Γ again at J
and K, respectively.
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A

B C

D

E

F

G

J

K

Notice that 4BFD ∼ 4JAD; as FB = FD, it follows that AJ = AD. Likewise,
4CGE ∼ 4KAE and GC = GE, so AK = AE. Hence,

AK = AE = AD = AJ,

so DEJK is cyclic with center A.
It follows that

]KED = ]KJD = ]KJF = ]KGF,

so we’re done.

Remark. Note that K and J must be distinct for this solution to work. Since G and K lie
on opposite sides of AC, K is on major arc ABC. As AK = AD = AE ≤ min(AB,AC),
K lies on minor arc AB. Similarly, J lies on minor arc AC, so K 6= J.
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§1.2 IMO 2018/2, proposed by Patrik Bak (SVK)
Available online at https://aops.com/community/p10626524.

Problem statement

Find all integers n ≥ 3 for which there exist real numbers a1, a2, . . . , an satisfying

aiai+1 + 1 = ai+2

for i = 1, 2, . . . , n, where indices are taken modulo n.

The answer is 3 | n, achieved by (−1,−1, 2,−1,−1, 2, . . . ). We present two solutions.

¶ First solution by inequalities. We compute aiai+1ai+2 in two ways:

aiai+1ai+2 = [ai+2 − 1]ai+2 = a2i+2 − ai+2

= ai[ai+3 − 1] = aiai+3 − ai.

Cyclically summing a2i+2 − ai+2 = aiai+3 − ai then gives∑
i

a2i+2 =
∑
i

aiai+3 ⇐⇒
∑
cyc

(ai − ai+3)
2 = 0.

This means for inequality reasons the sequence is 3-periodic. Since the sequence is clearly
not 1-periodic, as x2 + 1 = x has no real solutions. Thus 3 | n.

¶ Second solution by sign counting. Extend an to be a periodic sequence. The idea is
to look at the signs, and show the sequence of the signs must be −−+ repeated. This
takes several steps:

• The pattern −−− is impossible. Obvious, since the third term should be > 1.

• The pattern ++ is impossible. Then the sequence becomes strictly increasing,
hence may not be periodic.

• Zeros are impossible. If a1 = 0, then a2 = 0, a3 > 0, a4 > 0, which gives the
impossible ++.

• The pattern −−+−+ is impossible. Compute the terms:

a1 = −x < 0

a2 = −y < 0

a3 = 1 + xy > 1

a4 = 1− y(1 + xy) < 0

a5 = 1 + (1 + xy)(1− y(1 + xy)) < 1.

But now
a6 − a5 = (1 + a5a4)− (1 + a3a4) = a4(a5 − a3) > 0

since a5 > 1 > a3. This means we have the impossible ++ pattern.
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• The infinite alternating pattern −+−+−+−+ . . . is impossible. Note that

a1a2 + 1 = a3 < 0 < a4 = 1 + a2a3 =⇒ a1 < a3

since a2 > 0; extending this we get a1 < a3 < a5 < . . . which contradicts the
periodicity.

We finally collate the logic of sign patterns. Since the pattern is not alternating, there
must be −− somewhere. Afterwards must be +, and then after that must be two minus
signs (since one minus sign is impossible by impossibility of −−+−+ and −−− is also
forbidden); thus we get the periodic −−+ as desired.
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§1.3 IMO 2018/3, proposed by Morteza Saghafian (IRN)
Available online at https://aops.com/community/p10626557.

Problem statement

An anti-Pascal triangle is an equilateral triangular array of numbers such that,
except for the numbers in the bottom row, each number is the absolute value of
the difference of the two numbers immediately below it. For example, the following
array is an anti-Pascal triangle with four rows which contains every integer from 1
to 10.

4

2 6

5 7 1

8 3 10 9

Does there exist an anti-Pascal triangle with 2018 rows which contains every integer
from 1 to 1 + 2 + · · ·+ 2018?

The answer is no, there is no anti-Pascal triangle with the required properties.
Let n = 2018 and N = 1 + 2 + · · · + n. For every number d not in the bottom row,

draw an arrow from d to the larger of the two numbers below it (i.e. if d = a− b, draw
d → a). This creates an oriented forest (which looks like lightning strikes).

Consider the directed path starting from the top vertex A. Starting from the first
number, it increments by at least 1 + 2 + · · ·+ n, since the increments at each step in
the path are distinct; therefore equality must hold and thus the path from the top ends
at N = 1 + 2 + · · ·+ n with all the numbers {1, 2, . . . , n} being close by. Let B be that
position.

A

B

C

D X Y

Consider the two left/right neighbors X and Y of the endpoint B. Assume that B is
to the right of the midpoint of the bottom side, and complete the equilateral triangle
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as shown to an apex C. Consider the lightning strike from C hitting the bottom at D.
It travels at least bn/2− 1c steps, by construction. But the increases must be at least
n+1, n+2, . . .since 1, 2, . . . , n are close to the A → B lightning path. Then the number
at D is at least

(n+ 1) + (n+ 2) + · · ·+ (n+ (bn/2− 1c)) > 1 + 2 + · · ·+ n

for n ≥ 2018, contradiction.
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§2 Solutions to Day 2
§2.1 IMO 2018/4, proposed by Armenia
Available online at https://aops.com/community/p10632348.

Problem statement

A site is any point (x, y) in the plane for which x, y ∈ {1, . . . , 20}. Initially, each of
the 400 sites is unoccupied. Amy and Ben take turns placing stones on unoccupied
sites, with Amy going first; Amy has the additional restriction that no two of her
stones may be at a distance equal to

√
5. They stop once either player cannot move.

Find the greatest K such that Amy can ensure that she places at least K stones.

The answer is K = 100.
First, we show Amy can always place at least 100 stones. Indeed, treat the problem as

a grid with checkerboard coloring. Then Amy can choose to always play on one of the
200 black squares. In this way, she can guarantee half the black squares, i.e. she can get
1
2 · 200 = 100 stones.

Second, we show Ben can prevent Amy from placing more than 100 stones. Divide
into several 4× 4 squares and then further partition each 4× 4 squares as shown in the
grid below. 

1 2 3 4
3 4 1 2
2 1 4 3
4 3 2 1


The squares with each label form 4-cycles by knight jumps. For each such cycle, whenever
Amy plays in the cycle, Ben plays in the opposite point of the cycle, preventing Amy
from playing any more stones in that original cycle. Hence Amy can play at most in 1/4
of the stones, as desired.
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§2.2 IMO 2018/5, proposed by Mongolia
Available online at https://aops.com/community/p10632353.

Problem statement

Let a1, a2, . . . be an infinite sequence of positive integers, and N a positive integer.
Suppose that for all integers n ≥ N , the expression

a1
a2

+
a2
a3

+ · · ·+ an−1

an
+

an
a1

is an integer. Prove that (an) is eventually constant.

The condition implies that the difference

S(n) =
an+1 − an

a1
+

an
an+1

is an integer for all n > N . We proceed by p-adic valuation only henceforth; fix a prime
p. Then analyzing the νp, we immediately get that for n > N :

• If νp(an) < νp(an+1), then νp(an+1) = νp(a1).

• If νp(an) = νp(an+1), no conclusion.

• If νp(an) > νp(an+1), then νp(an+1) ≥ νp(a1).

In other words:

Claim — Let p be a prime. Consider the sequence νp(aN+1), νp(aN+2), . . . . Then
either:

• We have νp(aN+1) ≥ νp(aN+2) ≥ . . . and so on, i.e. the sequence is weakly
decreasing immediately; or

• For some index K > N we have νp(aK) < νp(aK+1) = νp(aK+2) = · · · = νp(a1),
i.e. the sequence “jumps” to νp(a1) at some point and then stays there forever
after. Note this requires νp(a1) > 0.

A cartoon of the situation is drawn below.

νp(a1)

n > N
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As only finitely many primes p divide a1, after some time νp(an) is fixed for all such
p | a1. Afterwards, the sequence satisfies an+1 | an for each n, and thus must be eventually
constant.

Remark. This solution is almost completely p-adic, in the sense that I think a similar result
holds if one replaces an ∈ Z by an ∈ Zp for any particular prime p. In other words, the
primes almost do not talk to each other.

There is one caveat: if xn is an integer sequence such that νp(xn) is eventually constant
for each prime then xn may not be constant. For example, take xn to be the nth prime!
That’s why in the first claim (applied to co-finitely many of the primes), we need the stronger
non-decreasing condition, rather than just eventually constant.

Remark. An alternative approach is to show that, when the fractions an/a1 is written in
simplest form for n = N + 1, N + 2, . . . , the numerator and denominator are both weakly
decreasing. Hence it must eventually be constant; in which case it equals 1

1 .
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§2.3 IMO 2018/6, proposed by Poland
Available online at https://aops.com/community/p10632360.

Problem statement

A convex quadrilateral ABCD satisfies AB · CD = BC ·DA. Point X lies inside
ABCD so that

∠XAB = ∠XCD and ∠XBC = ∠XDA.

Prove that ∠BXA+ ∠DXC = 180◦.

We present two solutions by inversion. The first is the official one. The second is a
solution via inversion, completed by USA5 Michael Ren.

¶ Official solution by inversion. In what follows a convex quadrilateral is called
quasi-harmonic if AB · CD = BC ·DA.

Claim — A quasi-harmonic quadrilateral is determined up to similarity by its
angles.

(This could be expected by degrees of freedom; a quadrilateral has four degrees of freedom
up to similarity; the pseudo-harmonic condition is one while the angles provide three
conditions.)

Proof. Do some inequalities.

Performing an inversion at X, one obtains a second quasi-harmonic quadrilateral
A∗B∗C∗D∗ which has the same angles as the original one, ∠D∗ = ∠A, ∠A∗ = ∠B, and
so on. Thus by the claim we obtain similarity

D∗A∗B∗C∗ ∼ ABCD.

If one then maps D∗A∗B∗C∗, onto ABCD, the image of X∗ becomes a point isogonally
conjugate to X. In other words, X has an isogonal conjugate in ABCD.

It is well-known that this is equivalent to ∠BXA + ∠DXC = 180◦, for example by
inscribing an ellipse with foci X and X∗.

¶ Second solution: “rhombus inversion”, by Michael Ren. Since

AB

AD
=

CB

CD

and
BA

BC
=

DA

DC

it follows that B and D lie on an Apollonian circle ωAC through A and C, while A and
C lie on an Apollonian circle ωBD through B and D. We let these two circles intersect
at a point P inside ABCD.

The main idea is then to perform an inversion about P with radius 1. We ob-
tain:
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Lemma
The image of ABCD is a rhombus.

Proof. By the inversion distance formula, we have

1

A′B′ =
PA

AB
· PB =

PC

BC
· PB =

1

B′C ′

and so A′B′ = B′C ′. In a similar way, we derive B′C ′ = C ′D′ = D′A′, so the image is a
rhombus as claimed.

Let us now translate the angle conditions. We were given that ]XAB = ]XCD, but

]XAB = ]XAP + ]PAB = ]PX ′A′ + ]A′B′P

]XCD = ]XCP + ]PCD = ]PX ′C ′ + ]C ′D′P

so subtracting these gives

]A′X ′C ′ = ]A′B′P + ]PD′C ′ = ](A′B′, B′P ) + ](PD′, C ′D′)

= ](A′B′, B′P ) + ](PD′, A′B′) = ]D′PB′. (1)

since A′B′ ‖ C ′D′. Similarly, we obtain

]B′X ′D′ = ]A′PC ′. (2)

We now translate the desired condition. Since

]AXB = ]AXP + ]PXB = ]PA′X ′ + ]X ′B′P

]CXD = ]CXP + ]PXD = ]PC ′X ′ + ]X ′DP ′

we compute

]AXB + ]CXD = (]PA′X ′ + ]X ′B′P ) + (]PC ′X ′ + ]X ′D′P )

= −
[(
]A′X ′P + ]X ′PA′)+ (

]PX ′B′ + ]B′PX ′)]
−
[(
]C ′X ′P + ]X ′PC ′)+ (

]PX ′D′ + ]D′PX ′)]
=

[
]PX ′A′ + ]BX ′P + ]PX ′C ′ + ]D′X ′P

]
+
[
]A′PX ′ + ]X ′PB′ + ]C ′PX ′ + ]X ′PD′]

= ]A′PB′ + ]C ′PD′ + ]B′X ′C + ]D′X ′A

and we wish to show this is equal to zero, i.e. the desired becomes

]A′PB′ + ]C ′PD′ + ]B′X ′C + ]D′X ′A = 0. (3)

In other words, the problem is to show (1) and (2) implies (3).
Henceforth drop apostrophes. Here is the inverted diagram (with apostrophes dropped).
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A

B

C

D

X

Y

Q

P

Let Q denote the reflection of P and let Y denote the second intersection of (BQC)
and (AQD). Then

−]AXC = −]DPB = ]BQD = ]BQY + ]Y QD = ]BCY + ]Y AD

= ](BC,CY ) + ](Y A,AD) = ]Y CA = −]AY C.

Hence XACY is concyclic; similarly XBDY is concyclic.

Claim — X 6= Y .

Proof. To see this: Work pre-inversion assuming AB < AC. Then Q was the center of
ωBD. If T was the second intersection of BA with (QBC), then QB = QD = QT =√
QA ·QC, by shooting lemma. Since ∠BAD < 180◦, it follows (QBCY ) encloses

ABCD (pre-inversion). (This part is where the hypothesis that ABCD is convex with
X inside is used.)

Finally, we do an angle chase to finish:

]DXA = ]DXY + ]Y XA = ]DBY + ]Y CA

= ](DB,Y B) + ](CY,CA) = ]CY B + 90◦

= ]CQB + 90◦ = −]APB + 90◦. (4)

Similarly,
]BXC = ]DPC + 90◦. (5)

Summing (4) and (5) gives (3).

Remark. A difficult part of the problem in many solutions is that the conclusion is false in
the directed sense, if the point X is allowed to lie outside the quadrilateral. We are saved in
the first solution because the equivalence of the isogonal conjugation requires X inside the
quadrilateral. On the other hand, in the second solution, the issue appears in the presence
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of the second point Y .

16

http://web.evanchen.cc

	Problems
	Solutions to Day 1
	IMO 2018/1, proposed by Silouanos Brazitikos, Vangelis Psyxas, Michael Sarantis (HEL)
	IMO 2018/2, proposed by Patrik Bak (SVK)
	IMO 2018/3, proposed by Morteza Saghafian (IRN)

	Solutions to Day 2
	IMO 2018/4, proposed by Armenia
	IMO 2018/5, proposed by Mongolia
	IMO 2018/6, proposed by Poland


