Team Selection Test for the $58^{\text {th }}$ International Mathematical Olympiad

United States of America

Day I

Thursday, December 8, 2016

Time limit: 4.5 hours. Each problem is worth 7 points.

IMO TST 1. In a sports league, each team uses a set of at most t signature colors. A set S of teams is color-identifiable if one can assign each team in S one of their signature colors, such that no team in S is assigned any signature color of a different team in S. For all positive integers n and t, determine the maximum integer $g(n, t)$ such that: In any sports league with exactly n distinct colors present over all teams, one can always find a color-identifiable set of size at least $g(n, t)$.

IMO TST 2. Let $A B C$ be an acute scalene triangle with circumcenter O, and let T be on line $B C$ such that $\angle T A O=90^{\circ}$. The circle with diameter $\overline{A T}$ intersects the circumcircle of $\triangle B O C$ at two points A_{1} and A_{2}, where $O A_{1}<O A_{2}$. Points B_{1}, B_{2}, C_{1}, C_{2} are defined analogously.
(a) Prove that $\overline{A A_{1}}, \overline{B B_{1}}, \overline{C C_{1}}$ are concurrent.
(b) Prove that $\overline{A A_{2}}, \overline{B B_{2}}, \overline{C C_{2}}$ are concurrent on the Euler line of triangle $A B C$.

IMO TST 3. Let $P, Q \in \mathbb{R}[x]$ be relatively prime nonconstant polynomials. Show that there can be at most three real numbers λ such that $P+\lambda Q$ is the square of a polynomial.

Team Selection Test for the $58^{\text {th }}$ International Mathematical Olympiad

United States of America

Day II

Thursday, January 19, 2017

Time limit: 4.5 hours. Each problem is worth 7 points.

IMO TST 4. You are cheating at a trivia contest. For each question, you can peek at each of the $n>1$ other contestant's guesses before writing your own. For each question, after all guesses are submitted, the emcee announces the correct answer. A correct guess is worth 0 points. An incorrect guess is worth -2 points for other contestants, but only -1 point for you, because you hacked the scoring system. After announcing the correct answer, the emcee proceeds to read out the next question. Show that if you are leading by 2^{n-1} points at any time, then you can surely win first place.

IMO TST 5. Let $A B C$ be a triangle with altitude $\overline{A E}$. The A-excircle touches $\overline{B C}$ at D, and intersects the circumcircle at two points F and G. Prove that one can select points V and N on lines $D G$ and $D F$ such that quadrilateral $E V A N$ is a rhombus.

IMO TST 6. Prove that there are infinitely many triples (a, b, p) of integers, with p prime and $0<a \leq b<p$, for which p^{3} divides $(a+b)^{p}-a^{p}-b^{p}$.

