Team Selection Test for the 58th International Mathematical Olympiad

United States of America

Day I

Thursday, December 8, 2016

Time limit: 4.5 hours. Each problem is worth 7 points.

IMO TST 1. In a sports league, each team uses a set of at most t signature colors. A set S of teams is *color-identifiable* if one can assign each team in S one of their signature colors, such that no team in S is assigned *any* signature color of a different team in S. For all positive integers n and t, determine the maximum integer g(n,t) such that: In any sports league with exactly n distinct colors present over all teams, one can always find a color-identifiable set of size at least g(n,t).

IMO TST 2. Let ABC be an acute scalene triangle with circumcenter O, and let T be on line BC such that $\angle TAO = 90^{\circ}$. The circle with diameter \overline{AT} intersects the circumcircle of $\triangle BOC$ at two points A_1 and A_2 , where $OA_1 < OA_2$. Points B_1 , B_2 , C_1 , C_2 are defined analogously.

- (a) Prove that $\overline{AA_1}$, $\overline{BB_1}$, $\overline{CC_1}$ are concurrent.
- (b) Prove that $\overline{AA_2}$, $\overline{BB_2}$, $\overline{CC_2}$ are concurrent on the Euler line of triangle ABC.

IMO TST 3. Let $P, Q \in \mathbb{R}[x]$ be relatively prime nonconstant polynomials. Show that there can be at most three real numbers λ such that $P + \lambda Q$ is the square of a polynomial.

Team Selection Test for the 58th International Mathematical Olympiad

United States of America

Day II

Thursday, January 19, 2017

Time limit: 4.5 hours. Each problem is worth 7 points.

IMO TST 4. You are cheating at a trivia contest. For each question, you can peek at each of the n > 1 other contestant's guesses before writing your own. For each question, after all guesses are submitted, the emcee announces the correct answer. A correct guess is worth 0 points. An incorrect guess is worth -2 points for other contestants, but only -1 point for you, because you hacked the scoring system. After announcing the correct answer, the emcee proceeds to read out the next question. Show that if you are leading by 2^{n-1} points at any time, then you can surely win first place.

IMO TST 5. Let ABC be a triangle with altitude \overline{AE} . The A-excircle touches \overline{BC} at D, and intersects the circumcircle at two points F and G. Prove that one can select points V and N on lines DG and DF such that quadrilateral EVAN is a rhombus.

IMO TST 6. Prove that there are infinitely many triples (a, b, p) of integers, with p prime and $0 < a \le b < p$, for which p^3 divides $(a + b)^p - a^p - b^p$.