Team Selection Test for the $57^{\text {th }}$ International Mathematical Olympiad

United States of America

Day I

Thursday, December 10, 2015

Time limit: 4.5 hours. Each problem is worth 7 points.

IMO TST 1. Let $S=\{1, \ldots, n\}$. Given a bijection $f: S \rightarrow S$ an orbit of f is a set of the form $\{x, f(x), f(f(x)), \ldots\}$ for some $x \in S$. We denote by $c(f)$ the number of distinct orbits of f. For example, if $n=3$ and $f(1)=2, f(2)=1, f(3)=3$, the two orbits are $\{1,2\}$ and $\{3\}$, hence $c(f)=2$.
Given k bijections f_{1}, \ldots, f_{k} from S to itself, prove that

$$
c\left(f_{1}\right)+\cdots+c\left(f_{k}\right) \leq n(k-1)+c(f)
$$

where $f: S \rightarrow S$ is the composed function $f_{1} \circ \cdots \circ f_{k}$.

IMO TST 2. Let $A B C$ be a scalene triangle with circumcircle Ω, and suppose the incircle of $A B C$ touches $B C$ at D. The angle bisector of $\angle A$ meets $B C$ and Ω at K and M. The circumcircle of $\triangle D K M$ intersects the A-excircle at S_{1}, S_{2}, and Ω at $T \neq M$. Prove that line $A T$ passes through either S_{1} or S_{2}.

IMO TST 3. Let p be a prime number. Let \mathbb{F}_{p} denote the integers modulo p, and let $\mathbb{F}_{p}[x]$ be the set of polynomials with coefficients in \mathbb{F}_{p}. Define $\Psi: \mathbb{F}_{p}[x] \rightarrow \mathbb{F}_{p}[x]$ by

$$
\Psi\left(\sum_{i=0}^{n} a_{i} x^{i}\right)=\sum_{i=0}^{n} a_{i} x^{p^{i}}
$$

Prove that for nonzero polynomials $F, G \in \mathbb{F}_{p}[x]$,

$$
\Psi(\operatorname{gcd}(F, G))=\operatorname{gcd}(\Psi(F), \Psi(G))
$$

Team Selection Test for the $\mathbf{5 7}{ }^{\text {th }}$ International Mathematical Olympiad

United States of America

Day II
Thursday, January 21, 2016

Time limit: 4.5 hours. Each problem is worth 7 points.

IMO TST 4. Let $\sqrt{3}=1 . b_{1} b_{2} b_{3} \cdots(2)$ be the binary representation of $\sqrt{3}$. Prove that for any positive integer n, at least one of the digits $b_{n}, b_{n+1}, \ldots, b_{2 n}$ equals 1 .

IMO TST 5. Let $n \geq 4$ be an integer. Find all functions $W:\{1, \ldots, n\}^{2} \rightarrow \mathbb{R}$ such that for every partition $[n]=A \cup B \cup C$ into disjoint sets,

$$
\sum_{a \in A} \sum_{b \in B} \sum_{c \in C} W(a, b) W(b, c)=|A||B||C| .
$$

IMO TST 6. Let $A B C$ be an acute scalene triangle and let P be a point in its interior. Let A_{1}, B_{1}, C_{1} be projections of P onto triangle sides $B C, C A, A B$, respectively. Find the locus of points P such that $A A_{1}, B B_{1}, C C_{1}$ are concurrent and $\angle P A B+\angle P B C+$ $\angle P C A=90$.

