Team Selection Test for the 57th International Mathematical Olympiad

United States of America

Day I

Thursday, December 10, 2015

Time limit: 4.5 hours. Each problem is worth 7 points.

IMO TST 1. Let $S = \{1, ..., n\}$. Given a bijection $f : S \to S$ an *orbit* of f is a set of the form $\{x, f(x), f(f(x)), ...\}$ for some $x \in S$. We denote by c(f) the number of distinct orbits of f. For example, if n = 3 and f(1) = 2, f(2) = 1, f(3) = 3, the two orbits are $\{1, 2\}$ and $\{3\}$, hence c(f) = 2.

Given k bijections $f_1, ..., f_k$ from S to itself, prove that

$$c(f_1) + \dots + c(f_k) \le n(k-1) + c(f)$$

where $f: S \to S$ is the composed function $f_1 \circ \cdots \circ f_k$.

IMO TST 2. Let ABC be a scalene triangle with circumcircle Ω , and suppose the incircle of ABC touches BC at D. The angle bisector of $\angle A$ meets BC and Ω at K and M. The circumcircle of $\triangle DKM$ intersects the A-excircle at S_1 , S_2 , and Ω at $T \neq M$. Prove that line AT passes through either S_1 or S_2 .

IMO TST 3. Let p be a prime number. Let \mathbb{F}_p denote the integers modulo p, and let $\mathbb{F}_p[x]$ be the set of polynomials with coefficients in \mathbb{F}_p . Define $\Psi \colon \mathbb{F}_p[x] \to \mathbb{F}_p[x]$ by

$$\Psi\left(\sum_{i=0}^{n} a_i x^i\right) = \sum_{i=0}^{n} a_i x^{p^i}.$$

Prove that for nonzero polynomials $F, G \in \mathbb{F}_p[x]$,

$$\Psi(\gcd(F,G)) = \gcd(\Psi(F), \Psi(G)).$$

Team Selection Test for the 57th International Mathematical Olympiad

United States of America

Day II

Thursday, January 21, 2016

Time limit: 4.5 hours. Each problem is worth 7 points.

IMO TST 4. Let $\sqrt{3} = 1.b_1b_2b_3..._{(2)}$ be the binary representation of $\sqrt{3}$. Prove that for any positive integer n, at least one of the digits $b_n, b_{n+1}, \ldots, b_{2n}$ equals 1.

IMO TST 5. Let $n \ge 4$ be an integer. Find all functions $W: \{1, \ldots, n\}^2 \to \mathbb{R}$ such that for every partition $[n] = A \cup B \cup C$ into disjoint sets,

$$\sum_{a\in A}\sum_{b\in B}\sum_{c\in C}W(a,b)W(b,c)=|A||B||C|.$$

IMO TST 6. Let ABC be an acute scalene triangle and let P be a point in its interior. Let A_1 , B_1 , C_1 be projections of P onto triangle sides BC, CA, AB, respectively. Find the locus of points P such that AA_1 , BB_1 , CC_1 are concurrent and $\angle PAB + \angle PBC + \angle PCA = 90$.