Team Selection Test for the 55th International Mathematical Olympiad

United States of America

Day I

Thursday, December 12, 2013

Time limit: 4.5 hours. Each problem is worth 7 points.

IMO TST 1. Let ABC be an acute triangle, and let X be a variable interior point on the minor arc BC of its circumcircle. Let P and Q be the feet of the perpendiculars from X to lines CA and CB, respectively. Let R be the intersection of line PQ and the perpendicular from B to AC. Let ℓ be the line through P parallel to XR. Prove that as X varies along minor arc BC, the line ℓ always passes through a fixed point.

IMO TST 2. Let a_1, a_2, a_3, \dots be a sequence of integers, with the property that every consecutive group of a_i 's averages to a perfect square. More precisely, for all positive integers n and k, the quantity

$$\frac{a_n + a_{n+1} + \dots + a_{n+k-1}}{k}$$

is always the square of an integer. Prove that the sequence must be constant (all a_i are equal to the same perfect square).

IMO TST 3. Let *n* be an even positive integer, and let *G* be an *n*-vertex (simple) graph with exactly $\frac{n^2}{4}$ edges. An unordered pair of distinct vertices $\{x, y\}$ is said to be *amicable* if they have a common neighbor (there is a vertex *z* such that *xz* and *yz* are both edges). Prove that *G* has at least $2\binom{n/2}{2}$ pairs of vertices which are amicable.

Team Selection Test for the 55th International Mathematical Olympiad

United States of America

Day II

Thursday, January 23, 2014

Time limit: 4.5 hours. Each problem is worth 7 points.

IMO TST 4. Let *n* be a positive even integer, and let $c_1, c_2, ..., c_{n-1}$ be real numbers satisfying

$$\sum_{i=1}^{n-1} |c_i - 1| < 1.$$

Prove that

$$2x^{n} - c_{n-1}x^{n-1} + c_{n-2}x^{n-2} - \dots - c_{1}x^{1} + 2$$

has no real roots.

IMO TST 5. Let ABCD be a cyclic quadrilateral, and let E, F, G, and H be the midpoints of AB, BC, CD, and DA respectively. Let W, X, Y and Z be the orthocenters of triangles AHE, BEF, CFG and DGH, respectively. Prove that the quadrilaterals ABCD and WXYZ have the same area.

IMO TST 6. For a prime p, a subset S of residues modulo p is called a *sum-free* multiplicative subgroup of \mathbb{F}_p if

- there is a nonzero residue α modulo p such that $S = \{1, \alpha^1, \alpha^2, ...\}$ (all considered mod p), and
- there are no $a, b, c \in S$ (not necessarily distinct) such that $a + b \equiv c \pmod{p}$.

Prove that for every integer N, there is a prime p and a sum-free multiplicative subgroup S of \mathbb{F}_p such that $|S| \geq N$.