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This is a compilation of solutions for the 2013 IMO. Some of the solutions
are my own work, but many are from the official solutions provided by the
organizers (for which they hold any copyrights), and others were found by
users on the Art of Problem Solving forums.

These notes will tend to be a bit more advanced and terse than the “official”
solutions from the organizers. In particular, if a theorem or technique is not
known to beginners but is still considered “standard”, then I often prefer to
use this theory anyways, rather than try to work around or conceal it. For
example, in geometry problems I typically use directed angles without further
comment, rather than awkwardly work around configuration issues. Similarly,
sentences like “let R denote the set of real numbers” are typically omitted
entirely.

Corrections and comments are welcome!
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§0 Problems
1. Let k and n be positive integers. Prove that there exist positive integers m1, . . . ,

mk such that

1 +
2k − 1

n
=

(
1 +

1

m1

)(
1 +

1

m2

)
. . .

(
1 +

1

mk

)
.

2. A configuration of 4027 points in the plane is called Colombian if it consists of 2013
red points and 2014 blue points, and no three of the points of the configuration
are collinear. By drawing some lines, the plane is divided into several regions. An
arrangement of lines is good for a Colombian configuration if the following two
conditions are satisfied:

(i) No line passes through any point of the configuration.
(ii) No region contains points of both colors.

Find the least value of k such that for any Colombian configuration of 4027 points,
there is a good arrangement of k lines.

3. Let the excircle of triangle ABC opposite the vertex A be tangent to the side BC
at the point A1. Define the points B1 on CA and C1 on AB analogously, using the
excircles opposite B and C, respectively. Suppose that the circumcenter of triangle
A1B1C1 lies on the circumcircle of triangle ABC. Prove that triangle ABC is
right-angled.

4. Let ABC be an acute triangle with orthocenter H, and let W be a point on the side
BC, between B and C. The points M and N are the feet of the altitudes drawn
from B and C, respectively. Suppose ω1 is the circumcircle of triangle BWN and
X is a point such that WX is a diameter of ω1. Similarly, ω2 is the circumcircle of
triangle CWM and Y is a point such that WY is a diameter of ω2. Show that the
points X, Y , and H are collinear.

5. Suppose a function f : Q>0 → R satisfies:
(i) If x, y ∈ Q>0, then f(x)f(y) ≥ f(xy).
(ii) If x, y ∈ Q>0, then f(x+ y) ≥ f(x) + f(y).
(iii) There exists a rational number a > 1 with f(a) = a.
Prove that f(x) = x for all positive rational numbers x.

6. Let n ≥ 3 be an integer, and consider a circle with n + 1 equally spaced points
marked on it. Consider all labellings of these points with the numbers 0, 1, . . . , n
such that each label is used exactly once; two such labellings are considered to
be the same if one can be obtained from the other by a rotation of the circle. A
labelling is called beautiful if, for any four labels a < b < c < d with a+ d = b+ c,
the chord joining the points labelled a and d does not intersect the chord joining
the points labelled b and c. Let M be the number of beautiful labelings, and let N
be the number of ordered pairs (x, y) of positive integers such that x+ y ≤ n and
gcd(x, y) = 1. Prove that M = N + 1.
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§1 Solutions to Day 1
§1.1 IMO 2013/1, proposed by Japan
Available online at https://aops.com/community/p5720240.

Problem statement

Let k and n be positive integers. Prove that there exist positive integers m1, . . . ,
mk such that

1 +
2k − 1

n
=

(
1 +

1

m1

)(
1 +

1

m2

)
. . .

(
1 +

1

mk

)
.

By induction on k ≥ 1. When k = 1 there is nothing to prove.
For the inductive step, if n is even, write

n+ (2k − 1)

n
=

(
1 +

1

n+ (2k − 2)

)
·
n
2 + (2k−1 − 1)

n
2

and use inductive hypothesis on the second term. On the other hand if n is odd then
write

n+ (2k − 1)

n
=

(
1 +

1

n

)
·
n+1
2 + (2k−1 − 1)

n+1
2

and use inductive hypothesis on the second term.
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§1.2 IMO 2013/2, proposed by Ivan Guo (AUS)
Available online at https://aops.com/community/p5720110.

Problem statement

A configuration of 4027 points in the plane is called Colombian if it consists of 2013
red points and 2014 blue points, and no three of the points of the configuration
are collinear. By drawing some lines, the plane is divided into several regions. An
arrangement of lines is good for a Colombian configuration if the following two
conditions are satisfied:

(i) No line passes through any point of the configuration.

(ii) No region contains points of both colors.

Find the least value of k such that for any Colombian configuration of 4027 points,
there is a good arrangement of k lines.

The answer is k ≥ 2013.
To see that k = 2013 is necessary, consider a regular 4026-gon and alternatively color

the points red and blue, then place the last blue point anywhere in general position (it
doesn’t matter). Each side of the 4026 is a red-blue line segment which needs to be cut
by one of the k lines, and each line can cut at most two of the segments.

Now, we prove that k = 2013 lines is sufficient. Consider the convex hull of all the
points.

• If the convex hull has any red points, cut that red point off from everyone else by a
single line. Then, for each of the remaining 2012 red points, break them into 1006
pairs arbitrarily, and for each pair {A,B} draw two lines parallel to AB and close
to them.

• If the convex hull has two consecutive blue points, cut those two blue points off
from everyone else by a single line. Then repeat the above construction for the
remaining 2012 blue points.

The end.
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§1.3 IMO 2013/3, proposed by Alexander A. Polyansky (RUS)
Available online at https://aops.com/community/p5720184.

Problem statement

Let the excircle of triangle ABC opposite the vertex A be tangent to the side BC
at the point A1. Define the points B1 on CA and C1 on AB analogously, using
the excircles opposite B and C, respectively. Suppose that the circumcenter of
triangle A1B1C1 lies on the circumcircle of triangle ABC. Prove that triangle ABC
is right-angled.

We ignore for now the given condition and prove the following important lemma.

Lemma
Let (AB1C1) meet (ABC) again at X. From BC1 = B1C follows XC1 = XB1, and
X is the midpoint of major arc B̂C.

Proof. This follows from the fact that we have a spiral similarity 4XBC1 ∼ 4XCB1

which must actually be a spiral congruence since BC1 = B1C.

We define the arc midpoints Y and Z similarly, which lie on the perpendicular bisectors
of A1C1, A1B1.

A

B C

X

Y

Z

A1

B1

C1

We now turn to the problem condition which asserts the circumcenter W of 4A1B1C1

lies on (ABC).

Claim — We may assume WLOG that W = X.

Proof. This is just configuration analysis, since we already knew that the arc midpoints
both lie on (ABC) and the relevant perpendicular bisectors.

5

http://web.evanchen.cc
https://aops.com/community/p5720184


IMO 2013 Solution Notes web.evanchen.cc, updated 25 February 2024

Point W lies on (ABC) and hence outside 4ABC, hence outside 4A1B1C1. Thus we
may assume WLOG that ∠B1A1C1 > 90◦. Then A and X lie on the same side of line
B1C1, and since W is supposed to lie both on (ABC) and the perpendicular bisector of
B1C1 it follows W = X.

Consequently, XY and XZ are exactly the perpendicular bisectors of A1C1, A1B1.
The rest is angle chase, the fastest one is

∠A = ∠C1XB1 = ∠C1XA1 + ∠A1XB1 = 2∠Y XA1 + 2∠A1XZ

= 2∠Y XZ = 180◦ − ∠A

which solves the problem.

Remark. Angle chasing is also possible even without the points Y and Z, though it takes
much longer. Introduce the Bevan point V and use the fact that V A1B1C is cyclic (with
diameter V C) and similarly V A1C1B is cyclic; a calculation then gives ∠CV B = 180◦− 1

2∠A.
Thus V lies on the circle with diameter IbIc.
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§2 Solutions to Day 2
§2.1 IMO 2013/4, proposed by Warut Suksompong, Potcharapol Suteparuk

(THA)
Available online at https://aops.com/community/p5720174.

Problem statement

Let ABC be an acute triangle with orthocenter H, and let W be a point on the side
BC, between B and C. The points M and N are the feet of the altitudes drawn
from B and C, respectively. Suppose ω1 is the circumcircle of triangle BWN and
X is a point such that WX is a diameter of ω1. Similarly, ω2 is the circumcircle of
triangle CWM and Y is a point such that WY is a diameter of ω2. Show that the
points X, Y , and H are collinear.

We present two solutions, an elementary one and then an advanced one by moving points.

¶ First solution, classical. Let P be the second intersection of ω1 and ω2; this is the
Miquel point, so P also lies on the circumcircle of AMN , which is the circle with diameter
AH.

A

B C

M

N

W

H
P

X

Y

We now contend:

Claim — Points P , H, X collinear. (Similarly, points P , H, Y are collinear.)

Proof using power of a point. By radical axis on BNMC, ω1, ω2, it follows that A, P ,
W are collinear. We know that ∠APH = 90◦, and also ∠XPW = 90◦ by construction.
Thus P , H, X are collinear.

Proof using angle chasing. This is essentially Reim’s theorem:

]NPH = ]NAH = ]BAH = ]ABX = ]NBX = ]NPX

as desired. Alternatively, one may prove A, P , W are collinear by ]NPA = ]NMA =
]NMC = ]NBC = ]NBW = ]NPW .
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¶ Second solution, by moving points. Fix 4ABC and vary W . Let ∞ be the point
at infinity perpendicular to BC for brevity.

By spiral similarity, the point X moves linearly on B∞ as W varies linearly on BC.
Similarly, so does Y . So in other words, the map

X 7→ W 7→ Y

is linear. However, the map
X 7→ Y ′ := XH ∩ C∞

is linear too.
To show that these maps are the same, it suffices to check it thus at two points.

• When W = B, the circle (BNW ) degenerates to the circle through B tangent to
BC, and X = CN ∩B∞. We have Y = Y ′ = C.

• When W = C, the result is analogous.

• Although we don’t need to do so, it’s also easy to check the result if W is the foot
from A since then XHWB and Y HWC are rectangles.
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§2.2 IMO 2013/5, proposed by Bulgaria
Available online at https://aops.com/community/p5720286.

Problem statement

Suppose a function f : Q>0 → R satisfies:

(i) If x, y ∈ Q>0, then f(x)f(y) ≥ f(xy).

(ii) If x, y ∈ Q>0, then f(x+ y) ≥ f(x) + f(y).

(iii) There exists a rational number a > 1 with f(a) = a.

Prove that f(x) = x for all positive rational numbers x.

First, we dispense of negative situations by proving:

Claim — For any integer n > 0, we have f(n) ≥ n.

Proof. Note by induction on (ii) we have f(nx) ≥ nf(x). Taking (x, y) = (a, 1) in (i)
gives f(1) ≥ 1, and hence f(n) ≥ n.

Claim — The f takes only positive values, and hence by (ii) is strictly increasing.

Proof, suggested by Gopal Goel. Let p, q > 0 be integers. Then f(q)f(p/q) ≥ f(p), and
since both min(f(p), f(q)) > 0 it follows f(p/q) > 0.

Claim — For any x > 1 we have f(x) ≥ x.

Proof. Note that

f(x)N ≥ f(xN ) ≥ f
(⌊
xN

⌋)
≥

⌊
xN

⌋
> xN − 1

for any integer N . Since N can be arbitrarily large, we conclude f(x) ≥ x for x > 1.

On the other hand, f has arbitrarily large fixed points (namely powers of a) so from
(ii) we’re essentially done. First, for x > 1 pick a large m and note

am = f(am) ≥ f(am − x) + f(x) ≥ (am − x) + x = am.

Finally, for x ≤ 1 use
nf(x) = f(n)f(x) ≥ f(nx) ≥ nf(x)

for large n.

Remark. Note that a > 1 is essential; if b ≥ 1 then f(x) = bx2 works with unique fixed
point 1/b ≤ 1.
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§2.3 IMO 2013/6, proposed by Russia
Available online at https://aops.com/community/p5720264.

Problem statement

Let n ≥ 3 be an integer, and consider a circle with n + 1 equally spaced points
marked on it. Consider all labellings of these points with the numbers 0, 1, . . . , n
such that each label is used exactly once; two such labellings are considered to
be the same if one can be obtained from the other by a rotation of the circle. A
labelling is called beautiful if, for any four labels a < b < c < d with a+ d = b+ c,
the chord joining the points labelled a and d does not intersect the chord joining
the points labelled b and c. Let M be the number of beautiful labelings, and let N
be the number of ordered pairs (x, y) of positive integers such that x+ y ≤ n and
gcd(x, y) = 1. Prove that M = N + 1.

First, here are half of the beautiful labellings up to reflection for n = 6, just for
concreteness.

0

1 2

34

5

6

0

1

2

34

5

6

0

12

3

4

5

6

0

1

2

3

45

6

0

1

2

3

4

5
6

0

1

2

3

4

5
6

Abbreviate “beautiful labelling of points around a circle” to ring. Moreover, throughout
the solution we will allow degenerate chords that join a point to itself; this has no effect
on the problem statement.

The idea is to proceed by induction in the following way. A ring of [0, n] is called linear
if it is an arithmetic progression modulo n+ 1. For example, the first two rings in the
diagram and the last one are linear for n = 6, while the other three are not.

Of course we can move from any ring on [0, n] to a ring on [0, n− 1] by deleting n. We
are going to prove that:

• Each linear ring on [0, n− 1] yields exactly two rings of [0, n], and

• Each nonlinear ring on [0, n− 1] yields exactly one rings of [0, n].
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In light of the fact there are obviously ϕ(n) linear rings on [0, n], the conclusion will
follow by induction.

We say a set of chords (possibly degenerate) is pseudo-parallel if for any three of them,
one of them separates the two. (Pictorially, one can perturb the endpoints along the
circle in order to make them parallel in Euclidean sense.) The main structure lemma is
going to be:

Lemma
In any ring, the chords of sum k (even including degenerate ones) are pseudo-parallel.

Proof. By induction on n. By shifting, we may assume that one of the chords is {0, k}
and discard all numbers exceeding k; that is, assume n = k. Suppose the other two
chords are {a, n− a} and {b, n− b}.

a b

n− a n− b

u v

u+ v
n− (u+ v)

0 n

We consider the chord {u, v} directly above {0, n}, drawn in blue. There are now three
cases.

• If u+ v = n, then delete 0 and n and decrease everything by 1. Then the chords
{a−1, n−a−1}, {b−1, n−b−1}, {u−1, v−1} contradict the induction hypothesis.

• If u + v < n, then search for the chord {u + v, n − (u + v)}. It lies on the other
side of {0, n} in light of chord {0, u+ v}. Now again delete 0 and n and decrease
everything by 1. Then the chords {a−1, n−a−1}, {b−1, n− b−1}, {u−1, v−1}
contradict the induction hypothesis.

• If u+ v > n, apply the map t 7→ n− t to the entire ring. This gives the previous
case as now (n− u) + (n− v) < n.

Next, we give another characterization of linear rings.

Lemma
A ring on [0, n− 1] is linear if and only if the point 0 does not lie between two chords
of sum n.

Proof. It’s obviously true for linear rings. Conversely, assume the property holds for
some ring. Note that the chords with sum n− 1 are pseudo-parallel and encompass every
point, so they are actually parallel. Similarly, the chords of sum n are actually parallel
and encompass every point other than 0. So the map

t 7→ n− t 7→ (n− 1)− (n− t) = t− 1 (mod n)

is rotation as desired.
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Lemma
Every nonlinear ring on [0, n− 1] induces exactly one ring on [0, n].

Proof. Because the chords of sum n are pseudo-parallel, there is at most one possibility
for the location n.

Conversely, we claim that this works. The chords of sum n (and less than n) are OK
by construction, so assume for contradiction that there exists a, b, c ∈ {1, . . . , n− 1} such
that a+ b = n + c. Then, we can “reflect” them using the (pseudo-parallel) chords of
length n to find that (n− a) + (n− b) = 0 + (n− c), and the chords joining 0 to n− c
and n− a to n− b intersect, by definition.

0

n

n− a n− c

b

n− b

ca

This is a contradiction that the original numbers on [0, n− 1] form a ring.

Lemma
Every linear ring on [0, n− 1] induces exactly two rings on [0, n].

Proof. Because the chords of sum n are pseudo-parallel, the point n must lie either
directly to the left or right of 0. For the same reason as in the previous proof, both of
them work.
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