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Evan Chen《陳誼廷》

30 September 2023

This is a compilation of solutions for the 2012 IMO. Some of the solutions
are my own work, but many are from the official solutions provided by the
organizers (for which they hold any copyrights), and others were found by
users on the Art of Problem Solving forums.

These notes will tend to be a bit more advanced and terse than the “official”
solutions from the organizers. In particular, if a theorem or technique is not
known to beginners but is still considered “standard”, then I often prefer to
use this theory anyways, rather than try to work around or conceal it. For
example, in geometry problems I typically use directed angles without further
comment, rather than awkwardly work around configuration issues. Similarly,
sentences like “let R denote the set of real numbers” are typically omitted
entirely.

Corrections and comments are welcome!
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§0 Problems
1. Given triangle ABC the point J is the centre of the excircle opposite the vertex

A. This excircle is tangent to the side BC at M , and to the lines AB and AC at
K and L, respectively. The lines LM and BJ meet at F , and the lines KM and
CJ meet at G. Let S be the point of intersection of the lines AF and BC, and
let T be the point of intersection of the lines AG and BC. Prove that M is the
midpoint of ST .

2. Let a2, a3, . . . , an be positive reals with product 1, where n ≥ 3. Show that

(1 + a2)
2(1 + a3)

3 . . . (1 + an)
n > nn.

3. The liar’s guessing game is a game played between two players A and B. The rules
of the game depend on two fixed positive integers k and n which are known to both
players.
At the start of the game A chooses integers x and N with 1 ≤ x ≤ N . Player A
keeps x secret, and truthfully tells N to player B. Player B now tries to obtain
information about x by asking player A questions as follows: each question consists
of B specifying an arbitrary set S of positive integers (possibly one specified in
some previous question), and asking A whether x belongs to S. Player B may ask
as many questions as he wishes. After each question, player A must immediately
answer it with yes or no, but is allowed to lie as many times as she wants; the only
restriction is that, among any k + 1 consecutive answers, at least one answer must
be truthful.
After B has asked as many questions as he wants, he must specify a set X of at
most n positive integers. If x belongs to X, then B wins; otherwise, he loses. Prove
that:

(a) If n ≥ 2k, then B can guarantee a win.
(b) For all sufficiently large k, there exists an integer n ≥ (1.99)k such that B

cannot guarantee a win.

4. Find all functions f : Z → Z such that, for all integers a, b, c that satisfy a+b+c = 0,
the following equality holds:

f(a)2 + f(b)2 + f(c)2 = 2f(a)f(b) + 2f(b)f(c) + 2f(c)f(a).

5. Let ABC be a triangle with ∠BCA = 90◦, and let D be the foot of the altitude
from C. Let X be a point in the interior of the segment CD. Let K be the point
on the segment AX such that BK = BC. Similarly, let L be the point on the
segment BX such that AL = AC. Let M = AL ∩BK. Prove that MK = ML.

6. Find all positive integers n for which there exist non-negative integers a1, a2, . . . , an
such that

1

2a1
+

1

2a2
+ · · ·+ 1

2an
=

1

3a1
+

2

3a2
+ · · ·+ n

3an
= 1.
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§1 Solutions to Day 1
§1.1 IMO 2012/1
Available online at https://aops.com/community/p2736397.

Problem statement

Given triangle ABC the point J is the centre of the excircle opposite the vertex A.
This excircle is tangent to the side BC at M , and to the lines AB and AC at K and
L, respectively. The lines LM and BJ meet at F , and the lines KM and CJ meet
at G. Let S be the point of intersection of the lines AF and BC, and let T be the
point of intersection of the lines AG and BC. Prove that M is the midpoint of ST .

We employ barycentric coordinates with reference 4ABC. As usual a = BC, b = CA,
c = AB, s = 1

2(a+ b+ c).
It’s obvious that K = (−(s− c) : s : 0), M = (0 : s− b : s− c). Also, J = (−a : b : c).

We then obtain
G =

(
−a : b :

−as+ (s− c)b

s− b

)
.

It follows that

T =

(
0 : b :

−as+ (s− c)

s− b

)
= (0 : b(s− b) : b(s− c)− as).

Normalizing, we see that T =
(
0,− b

a , 1 +
b
a

)
, from which we quickly obtain MT = s.

Similarly, MS = s, so we’re done.
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§1.2 IMO 2012/2
Available online at https://aops.com/community/p2736375.

Problem statement

Let a2, a3, . . . , an be positive reals with product 1, where n ≥ 3. Show that

(1 + a2)
2(1 + a3)

3 . . . (1 + an)
n > nn.

Try the dumbest thing possible: by AM-GM,

(1 + a2)
2 ≥ 22a2

(1 + a3)
3 =

(
1

2
+

1

2
+ a3

)3

≥ 33

22
a3

(1 + a4)
4 =

(
1

3
+

1

3
+

1

3
+ a4

)4

≥ 44

33
a4

...

and so on. Multiplying these all gives the result. The inequality is strict since it’s not
possible that a2 = 1, a3 = 1

2 , et cetera.
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§1.3 IMO 2012/3
Available online at https://aops.com/community/p2736406.

Problem statement

The liar’s guessing game is a game played between two players A and B. The rules
of the game depend on two fixed positive integers k and n which are known to both
players.

At the start of the game A chooses integers x and N with 1 ≤ x ≤ N . Player
A keeps x secret, and truthfully tells N to player B. Player B now tries to obtain
information about x by asking player A questions as follows: each question consists
of B specifying an arbitrary set S of positive integers (possibly one specified in some
previous question), and asking A whether x belongs to S. Player B may ask as many
questions as he wishes. After each question, player A must immediately answer it
with yes or no, but is allowed to lie as many times as she wants; the only restriction
is that, among any k + 1 consecutive answers, at least one answer must be truthful.

After B has asked as many questions as he wants, he must specify a set X of at
most n positive integers. If x belongs to X, then B wins; otherwise, he loses. Prove
that:

(a) If n ≥ 2k, then B can guarantee a win.

(b) For all sufficiently large k, there exists an integer n ≥ (1.99)k such that B
cannot guarantee a win.

Call the players Alice and Bob.
Part (a): We prove the following.

Claim — If N ≥ 2k + 1, then in 2k + 1 questions, Bob can rule out some number
in {1, . . . , 2k + 1} form being equal to x.

Proof. First, Bob asks the question S0 = {2k + 1} until Alice answers “yes” or until Bob
has asked k+ 1 questions. If Alice answers “no” to all of these then Bob rules out 2k + 1.
So let’s assume Alice just said “yes”.

Now let T = {1, . . . , 2k}. Then, he asks k-follow up questions S1, . . . , Sk defined as
follows:

• S1 = {1, 3, 5, 7, . . . , 2k − 1} consists of all numbers in T whose least significant digit
in binary is 1.

• S2 = {2, 3, 6, 7, . . . , 2k − 2, 2k − 1} consists of all numbers in T whose second least
significant digit in binary is 1.

• More generally Si consists of all numbers in T whose ith least significant digit in
binary is 1.

WLOG Alice answers these all as “yes” (the other cases are similar). Among the last
k + 1 answers at least one must be truthful, and the number 2k (having zeros in all
relevant digits) does not appear in any of S0, . . . , Sk and is ruled out.
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Thus in this way Bob can repeatedly find non-possibilities for x (and then relabel the
remaining candidates 1, . . . , N − 1) until he arrives at a set of at most 2k numbers.

Part (b): It suffices to consider n =
⌈
1.99k

⌉
and N = n+ 1 for large k. At the tth

step, Bob asks some question St; we phrase each of Alice’s answers in the form “x /∈ Bt”,
where Bt is either St or its complement. (You may think of these as “bad sets”; the
idea is to show we can avoid having any number appear in k + 1 consecutive bad sets,
preventing Bob from ruling out any numbers.)

Main idea: for every number 1 ≤ x ≤ N , at time step t we define its weight to be

w(x) = 1.998e

where e is the largest number such that x ∈ Bt−1 ∩Bt−2 ∩ · · · ∩Bt−e.

Claim — Alice can ensure the total weight never exceeds 1.998k+1 for large k.

Proof. Let Wt denote the sum of weights after the tth question. We have W0 = N <
1000n. We will prove inductively that Wt < 1000n always.

At time t, Bob specifies a question St. We have Alice choose Bt as whichever of St or
St has lesser total weight, hence at most Wt/2. The weights of for Bt increase by a factor
of 1.998, while the weights for Bt all reset to 1. So the new total weight after time t is

Wt+1 ≤ 1.998 · Wt

2
+ #Bt ≤ 0.999Wt + n.

Thus if Wt < 1000n then Wt+1 < 1000n.
To finish, note that 1000n < 1000

(
1.99k + 1

)
< 1.998k+1 for k large.

In particular, no individual number can have weight 1.998k+1. Thus for every time
step t we have

Bt ∩Bt+1 ∩ · · · ∩Bt+k = ∅.

Then once Bob stops, if he declares a set of n positive integers, and x is an integer Bob
did not choose, then Alice’s question history is consistent with x being Alice’s number, as
among any k + 1 consecutive answers she claimed that x ∈ Bt for some t in that range.

Remark (Motivation). In our Bt setup, let’s think backwards. The problem is equivalent
to avoiding e = k + 1 at any time step t, for any number x. That means

• have at most two elements with e = k at time t− 1,

• thus have at most four elements with e = k − 1 at time t− 2,

• thus have at most eight elements with e = k − 2 at time t− 3,

• and so on.

We already exploited this in solving part (a). In any case it’s now natural to try letting
w(x) = 2e, so that all the cases above sum to “equally bad” situations: since 8 · 2k−2 =
4 · 2k−1 = 2 · 2k, say.

However, we then get Wt+1 ≤ 1
2 (2Wt) + n, which can increase without bound due to

contributions from numbers resetting to zero. The way to fix this is to change the weight to
w(x) = 1.998e, taking advantage of the little extra space we have due to having n ≥ 1.99k

rather than n ≥ 2k.
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§2 Solutions to Day 2
§2.1 IMO 2012/4
Available online at https://aops.com/community/p2737336.

Problem statement

Find all functions f : Z → Z such that, for all integers a, b, c that satisfy a+b+c = 0,
the following equality holds:

f(a)2 + f(b)2 + f(c)2 = 2f(a)f(b) + 2f(b)f(c) + 2f(c)f(a).

Answer: for arbitrary k ∈ Z, we have

(i) f(x) = kx2,

(ii) f(x) = 0 for even x, and f(x) = k for odd x, and

(iii) f(x) = 0 for x ≡ 0 (mod 4), f(x) = k for odd x, and f(x) = 4k for x ≡ 2 (mod 4).

These can be painfully seen to work. (It’s more natural to think of these as f(x) = x2,
f(x) = x2 (mod 4), f(x) = x2 (mod 8), and multiples thereof.)

Set a = b = c = 0 to get f(0) = 0. Then set c = 0 to get f(a) = f(−a), so f is even.
Now

f(a)2 + f(b)2 + f(a+ b)2 = 2f(a+ b) (f(a) + f(b)) + 2f(a)f(b)

or
(f(a+ b)− (f(a) + f(b)))2 = 4f(a)f(b).

Hence f(a)f(b) is a perfect square for all a, b ∈ Z. So there exists a λ such that
f(n) = λg(n)2, where g(n) ≥ 0. From here we recover

g(a+ b) = ±g(a)± g(b) .

Also g(0) = 0.
Let k = g(1) 6= 0. We now split into cases on g(2):

• g(2) = 0. Put b = 2 in original to get g(a+ 2) = ±g(a) = +g(a).

• g(2) = 2k. Cases on g(4):
– g(4) = 0, then we get (g(n))n≥0 = (0, 1, 2, 1, 0, 1, 2, 1, . . . ). This works.
– g(4) = 4k. This only happens when g(1) = k, g(2) = 2k, g(3) = 3k, g(4) = 4k.

Then
∗ g(5) = ±3k ± 2k = ±4k ± k.
∗ g(6) = ±4k ± 2k = ±5k ± k.
∗ . . .

and so by induction g(n) = nk.
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§2.2 IMO 2012/5
Available online at https://aops.com/community/p2737425.

Problem statement

Let ABC be a triangle with ∠BCA = 90◦, and let D be the foot of the altitude
from C. Let X be a point in the interior of the segment CD. Let K be the point on
the segment AX such that BK = BC. Similarly, let L be the point on the segment
BX such that AL = AC. Let M = AL ∩BK. Prove that MK = ML.

Let ωA and ωB be the circles through C centered at A and B; extend rays AK and BL
to hit ωB and ωA again at K∗, L∗. By radical center X, we have KLK∗L∗ is cyclic, say
with circumcircle ω.

A B

C

D

X

K
L

K∗

L∗

M

By orthogonality of (A) and (B) we find that AL, AL∗, BK, BK∗ are tangents to ω
(in particular, KLK∗L∗ is harmonic). In particular MK and ML are tangents to ω, so
MK = ML.
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§2.3 IMO 2012/6, proposed by Dusan Djukic (SRB)
Available online at https://aops.com/community/p2737435.

Problem statement

Find all positive integers n for which there exist non-negative integers a1, a2, . . . , an
such that

1

2a1
+

1

2a2
+ · · ·+ 1

2an
=

1

3a1
+

2

3a2
+ · · ·+ n

3an
= 1.

The answer is n ≡ 1, 2 (mod 4). To see these are necessary, note that taking the latter
equation modulo 2 gives

1 =
1

3a1
+

2

3a2
+ · · ·+ n

3an
≡ 1 + 2 + ..+ n (mod 2).

Now we prove these are sufficient. The following nice construction was posted on
AOPS by the user cfheolpiixn.

Claim — If n = 2k − 1 works then so does n = 2k.

Proof. Replace
k

3r
=

k

3r+1
+

2k

3r+1
. (∗)

Claim — If n = 4k + 2 works then so does n = 4k + 13.

Proof. First use the identity

k + 2

3r
=

k + 2

3r+2
+

4k + 3

3r+3
+

4k + 5

3r+3
+

4k + 7

3r+3
+

4k + 9

3r+3
+

4k + 11

3r+3
+

4k + 13

3r+3

to fill in the odd numbers. The even numbers can then be instantiated with (∗) too.

Thus it suffices to construct base cases for n = 1, n = 5, n = 9. They are

1 =
1

30

=
1

32
+

2

32
+

3

32
+

4

33
+

5

33

=
1

32
+

2

33
+

3

33
+

4

33
+

5

33
+

6

34
+

7

34
+

8

34
+

9

34
.
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