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This is an compilation of solutions for the 2009 IMO. Some of the solutions
are my own work, but many are from the official solutions provided by the
organizers (for which they hold any copyrights), and others were found on
the Art of Problem Solving forums.
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§0 Problems

1. Let n, k ≥ 2 be positive integers and let a1, a2, a3, . . . , ak be distinct integers in
the set {1, 2, . . . , n} such that n divides ai(ai+1 − 1) for i = 1, 2, . . . , k − 1. Prove
that n does not divide ak(a1 − 1).

2. Let ABC be a triangle with circumcenter O. The points P and Q are interior
points of the sides CA and AB respectively. Let K, L M be the midpoints of BP ,
CQ, PQ, respectively, and let Γ be the circumcircle of 4KLM . Suppose that PQ
is tangent to Γ. Prove that OP = OQ.

3. Suppose that s1, s2, s3, . . . is a strictly increasing sequence of positive integers
such that the sub-sequences ss1 , ss2 , ss3 , . . . and ss1+1, ss2+1, ss3+1, . . . are both
arithmetic progressions. Prove that the sequence s1, s2, s3, . . . is itself an arithmetic
progression.

4. Let ABC be a triangle with AB = AC. The angle bisectors of ∠CAB and ∠ABC
meet the sides BC and CA at D and E, respectively. Let K be the incenter of
triangle ADC. Suppose that ∠BEK = 45◦. Find all possible values of ∠CAB.

5. Find all functions f : Z>0 → Z>0 such that for positive integers a and b, the
numbers

a, f(b), f(b+ f(a)− 1)

are the sides of a non-degenerate triangle.

6. Let a1, a2, . . . , an be distinct positive integers and let M be a set of n− 1 positive
integers not containing s = a1 + · · ·+ an. A grasshopper is to jump along the real
axis, starting at the point 0 and making n jumps to the right with lengths a1, a2,
. . . , an in some order. Prove that the order can be chosen in such a way that the
grasshopper never lands on any point in M .
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§1 IMO 2009/1

Let n, k ≥ 2 be positive integers and let a1, a2, a3, . . . , ak be distinct integers in the set

{1, 2, . . . , n} such that n divides ai(ai+1 − 1) for i = 1, 2, . . . , k − 1. Prove that n does not divide

ak(a1 − 1).

We proceed indirectly and assume that

ai(ai+1 − 1) ≡ 0 (mod n)

for i = 1, . . . , k (indices taken modulo k). We claim that this implies all the ai are equal
modulo n.

Let q = pe be any prime power dividing n. Then, a1(a2 − 1) ≡ 0 (mod q), so p divides
either a1 or a2.

• If p | a1, then p - a1 − 1. Then

ak(a1 − 1) ≡ 0 (mod q) =⇒ ak ≡ 0 (mod q).

In particular, p | ak. So repeating this argument, we get ak−1 ≡ 0 (mod q),
ak−2 ≡ 0 (mod q), and so on.

• Similarly, if p | a2 − 1 then p - a2, and from

a2(a3 − 1) ≡ 0 (mod q) =⇒ a3 ≡ 1 (mod q).

In particular, p | a3−1. So repeating this argument, we get a4 ≡ 0 (mod q), a5 ≡ 0
(mod q), and so on.

Either way, we find ai (mod q) is constant (and either 0 or 1).
Since q was an arbitrary prime power dividing n, by Chinese remainder theorem we

conclude that ai (mod n) is constant as well. But this contradicts the assumption of
distinctness.
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§2 IMO 2009/2

Let ABC be a triangle with circumcenter O. The points P and Q are interior points of the sides

CA and AB respectively. Let K, L M be the midpoints of BP , CQ, PQ, respectively, and let Γ

be the circumcircle of 4KLM . Suppose that PQ is tangent to Γ. Prove that OP = OQ.

By power of a point, we have −AQ · QB = OQ2 − R2 and −AP · PC = OP 2 − R2.
Therefore, it suffices to show AQ ·QB = AP · PC.

A

B C

P

Q

M

K

L

As ML ‖ AC and MK ‖ AB we have that

]APQ = ]LMP = ]LKM

]PQA = ]KMQ = ]MLK

and consequently we have that4APQ ∼ 4MKL (with opposite orientations). Therefore

AQ

AP
=
ML

MK
=

2ML

2MK
=
PC

QB

id est AQ ·QB = AP · PC, which is what we wanted to prove.
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§3 IMO 2009/3, proposed by Gabriel Carroll

Suppose that s1, s2, s3, . . . is a strictly increasing sequence of positive integers such that the

sub-sequences ss1 , ss2 , ss3 , . . . and ss1+1, ss2+1, ss3+1, . . . are both arithmetic progressions. Prove

that the sequence s1, s2, s3, . . . is itself an arithmetic progression.

We present two solutions.

First solution (Alex Zhai) Let s(n)
def
= sn and write

s(s(n)) = Dn+A

s(s(n) + 1) = D′n+B.

In light of the bounds s(s(n)) ≤ s(s(n) + 1) ≤ s(s(n+ 1)) we right away recover D = D′

and A ≤ B.
Let dn = s(n+ 1)− s(n). Note that sup dn <∞ since dn is bounded above by A.
Then we let

m
def
= min dn, M

def
= max dn.

Now suppose a achieves the maximum, meaning s(a+ 1)− s(a) = M . Then

ds(s(a)) + · · ·+ ds(s(a+1))−1︸ ︷︷ ︸
D terms

= s(s(s(a+ 1)))− s(s(s(a)))

= (D · s(a+ 1) +A)− (D · s(a) +A) = DM.

Now M was maximal hence M = ds(s(a)) = · · · = ds(s(a+1))−1. But ds(s(a)) = B −A is a
constant. Hence M = B −A. In the same way m = B −A as desired.

Second solution We retain the notation D, A, B above, as well as m = minn s(n +
1)− s(n) ≥ B −A. We do the involution trick first as:

D = s(s(s(n) + 1))− s(s(s(n))) = s(Dn+B)− s(Dn+A)

and hence we recover D ≥ m(B −A).
The edge case D = B −A is easy since then m = 1 and D = s(Dn+B)− s(Dn+A)

forces s to be a constant shift. So henceforth assume D > B −A.
The idea is that right now the B terms are “too big”, so we want to use the involution

trick in a way that makes as many “A minus B” shape expressions as possible. This
motivates considering s(s(s(n+ 1)))− s(s(s(n) + 1) + 1) > 0, since the first expression
will have all A’s and the second expression will have all B’s. Calculation gives:

s(D(n+ 1) +A)− s(Dn+B + 1) = s(s(s(n+ 1)))− s(s(s(n) + 1) + 1)

= (Ds(n+ 1) +A)− (D(s(n) + 1) +B)

= D (s(n+ 1)− s(n)) +A−B −D.

Then by picking n achieving the minimum m,

m(D +A−B − 1)︸ ︷︷ ︸
>0

≤ s(s(s(n+ 1)))− s(s(s(n) + 1) + 1) ≤ Dm+A−B −D

which becomes
(D −m(B −A)) + ((B −A)−m) ≤ 0.
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Since both of these quantities were supposed to be nonnegative, we conclude m = B −A
and D = m2. Now the estimate D = s(Dn+ B)− s(Dn+ A) ≥ m(B − A) is actually
sharp, so it follows that s(n) is arithmetic.
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§4 IMO 2009/4

Let ABC be a triangle with AB = AC. The angle bisectors of ∠CAB and ∠ABC meet the sides

BC and CA at D and E, respectively. Let K be the incenter of triangle ADC. Suppose that

∠BEK = 45◦. Find all possible values of ∠CAB.

Here is the solution presented in my book EGMO.
Let I be the incenter of ABC, and set ∠DAC = 2x (so that 0◦ < x < 45◦). From

∠AIE = ∠DIC, it is easy to compute

∠KIE = 90◦ − 2x, ∠ECI = 45◦ − x, ∠IEK = 45◦, ∠KEC = 3x.

Having chased all the angles we want, we need a relationship. We can find it by considering
the side ratio IK

KC . Using the angle bisector theorem, we can express this in terms of
triangle IDC; however we can also express it in terms of triangle IEC.

A

CB D

E

K

A

CD

I

E

K

2x

45 ◦−
x

45◦− x

45◦ 3x

By the law of sines, we obtain

IK

KC
=

sin 45◦ · EK
sin(90◦−2x)

sin (3x) · EK
sin(45◦−x)

=
sin 45◦ sin (45◦ − x)

sin (3x) sin (90◦ − 2x)
.

Also, by the angle bisector theorem on 4IDC, we have

IK

KC
=
ID

DC
=

sin (45◦ − x)

sin (45◦ + x)
.

Equating these and cancelling sin (45◦ − x) 6= 0 gives

sin 45◦ sin (45◦ + x) = sin 3x sin (90◦ − 2x) .

Applying the product-sum formula (again, we are just trying to break down things as
much as possible), this just becomes

cos (x)− cos (90◦ + x) = cos (5x− 90◦)− cos (90◦ + x)
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or cosx = cos (5x− 90◦).
At this point we are basically done; the rest is making sure we do not miss any solutions

and write up the completion nicely. One nice way to do this is by using product-sum in
reverse as

0 = cos (5x− 90◦)− cosx = 2 sin (3x− 45◦) sin (2x− 45◦) .

This way we merely consider the two cases

sin (3x− 45◦) = 0 and sin (2x− 45◦) = 0.

Notice that sin θ = 0 if and only θ is an integer multiple of 180◦. Using the bound
0◦ < x < 45◦, it is easy to see that that the permissible values of x are x = 15◦ and
x = 45

2

◦
. As ∠A = 4x, this corresponds to ∠A = 60◦ and ∠A = 90◦, which can be seen

to work.
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§5 IMO 2009/5

Find all functions f : Z>0 → Z>0 such that for positive integers a and b, the numbers

a, f(b), f(b+ f(a)− 1)

are the sides of a non-degenerate triangle.

The only function is the identity function (which works). We prove it is the only one.
Let P (a, b) denote the given statement.

Claim — We have f(1) = 1, and f(f(n)) = n. (In particular f is a bijection.)

Proof. Note that
P (1, b) =⇒ f(b) = f(b+ f(1)− 1).

Otherwise, the function f is periodic modulo N = f(1)− 1 ≥ 1. This is impossible since
we can fix b and let a be arbitrarily large in some residue class modulo N .

Hence f(1) = 1, so taking P (1, n) gives f(f(n)) = n.

Claim — Let δ = f(2)− 1 > 0. Then for every n,

f(n+ 1) = f(n) + δ or f(n− 1) = f(n) + δ

Proof. Use
P (2, f(n)) =⇒ n− 2 < f(f(n) + δ) < n+ 2.

Let y = f(f(n) + δ), hence n− 2 < f(y) < n+ 2 and f(y) = f(n) + δ. But, remark that
if y = n, we get δ = 0, contradiction. So y ∈ {n+ 1, n− 1} and that is all.

We now show f is an arithmetic progression with common difference +δ. Indeed we
already know f(1) = 1 and f(2) = 1 + δ. Now suppose f(1) = 1, . . . , f(n) = 1 + (n− 1)δ.
Then by induction for any n ≥ 2, the second case can’t hold, so we have f(n+1) = f(n)+δ,
as desired.

Combined with f(f(n)) = n, we recover that f is the identity.
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§6 IMO 2009/6

Let a1, a2, . . . , an be distinct positive integers and let M be a set of n− 1 positive integers not

containing s = a1 + · · ·+ an. A grasshopper is to jump along the real axis, starting at the point 0

and making n jumps to the right with lengths a1, a2, . . . , an in some order. Prove that the order

can be chosen in such a way that the grasshopper never lands on any point in M .

The proof is by induction on n. Assume a1 < · · · < an and call each element of M
a mine. Let x = s − an. We consider four cases, based on whether x has a mine and
whether there is a mine past x.

• If x has no mine, and there is a mine past x, then at most n− 2 mines in [0, x] and
so we use induction to reach x, then leap from x to s and win.

• If x has no mine but there is also no mine to the right of x, then let m be the
maximal mine. By induction hypothesis on M \ {m}, there is a path to x using
{a1, . . . , an−1} which avoids mines except possibly m. If the path hits the mine m
on the hop of length ak, we then swap that hop with an, and finish.

• If x has a mine, but there are no mines to the right of x, we can repeat the previous
case with m = x.

• Now suppose x has a mine, and there is a mine past x, There should exist an
integer 1 ≤ i ≤ n− 1 such that s− ai and y = s− ai − an both have no mine. By
induction hypothesis, we can then reach y in n− 2 steps (as there are two mines to
the right of y), and then y → s− ai → s finishes.

Remark. It seems much of the difficulty of the problem is realizing that induction will
actually work. Attempts at induction are, indeed, a total minefield (ha!), and given the
position P6 of the problem, it is expected that many contestants will abandon induction
after some cursory attempts fail.
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