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§0 Problems

1. Let H be the orthocenter of an acute-angled triangle ABC. The circle ΓA centered
at the midpoint of BC and passing through H intersects the sideline BC at points
A1 and A2. Similarly, define the points B1, B2, C1, and C2. Prove that six points
A1, A2, B1, B2, C1, C2 are concyclic.

2. Let x, y, z be real numbers with xyz = 1, all different from 1. Prove that

x2

(x− 1)2
+

y2

(y − 1)2
+

z2

(z − 1)2
≥ 1

and show that equality holds for infinitely many choices of rational numbers x, y, z.

3. Prove that there are infinitely many positive integers n such that n2 + 1 has a
prime factor greater than 2n +

√
2n.

4. Find all functions f from the positive reals to the positive reals such that

f(w)2 + f(x)2

f(y2) + f(z2)
=

w2 + x2

y2 + z2

for all positive real numbers w, x, y, z satisfying wx = yz.

5. Let n and k be positive integers with k ≥ n and k − n an even number. There are
2n lamps labelled 1, 2, . . . , 2n each of which can be either on or off. Initially all
the lamps are off. We consider sequences of steps: at each step one of the lamps is
switched (from on to off or from off to on). Let N be the number of such sequences
consisting of k steps and resulting in the state where lamps 1 through n are all
on, and lamps n + 1 through 2n are all off. Let M be number of such sequences
consisting of k steps, resulting in the state where lamps 1 through n are all on, and
lamps n + 1 through 2n are all off, but where none of the lamps n + 1 through 2n
is ever switched on. Determine N

M .

6. Let ABCD be a convex quadrilateral with BA 6= BC. Denote the incircles of
triangles ABC and ADC by ω1 and ω2 respectively. Suppose that there exists a
circle ω tangent to ray BA beyond A and to the ray BC beyond C, which is also
tangent to the lines AD and CD. Prove that the common external tangents to ω1

and ω2 intersect on ω.
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§1 IMO 2008/1

Let H be the orthocenter of an acute-angled triangle ABC. The circle ΓA centered at the

midpoint of BC and passing through H intersects the sideline BC at points A1 and A2. Similarly,

define the points B1, B2, C1, and C2. Prove that six points A1, A2, B1, B2, C1, C2 are concyclic.

Let D, E, F be the centers of ΓA, ΓB , ΓC (in other words, the midpoints of the sides).
We first show that B1, B2, C1, C2 are concyclic. It suffices to prove that A lies on the

radical axis of the circles ΓB and ΓC .

A

B CD

EF

H

X

B1

B2

C1

C2

Let X be the second intersection of ΓB and ΓC . Clearly XH is perpendicular to the
line joining the centers of the circles, namely EF . But EF ‖ BC, so XH ⊥ BC. Since
AH ⊥ BC as well, we find that A, X, H are collinear, as needed.

Thus, B1, B2, C1, C2 are concyclic. Similarly, C1, C2, A1, A2 are concyclic, as are A1,
A2, B1, B2. Now if any two of these three circles coincide, we are done; else the pairwise
radical axii are not concurrent, contradiction. (Alternatively, one can argue directly that
O is the center of all three circles, by taking the perpendicular bisectors.)
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§2 IMO 2008/2

Let x, y, z be real numbers with xyz = 1, all different from 1. Prove that

x2

(x− 1)2
+

y2

(y − 1)2
+

z2

(z − 1)2
≥ 1

and show that equality holds for infinitely many choices of rational numbers x, y, z.

Let x = a/b, y = b/c, z = c/a, so we want to show(
a

a− b

)2

+

(
b

b− c

)2

+

(
c

c− a

)2

≥ 1.

A very boring computation shows this is equivalent to

(a2b + b2c + c2a− 3abc)2

(a− b)2(b− c)2(c− a)2
≥ 0

which proves the inequality (and it is unsurprising we are in such a situation, given that
there is an infinite curve of rationals).

For equality, it suffices to show there are infinitely many integer solutions to

a2b + b2c + c2a = 3abc ⇐⇒ a

c
+

b

a
+

c

a
= 3

or equivalently that there are infinitely many rational solutions to

u + v +
1

uv
= 3.

For any 0 6= u ∈ Q the real solution for u is

v =
−u + (u− 1)

√
1− 4/u + 3

2

and there are certainly infinitely many rational numbers u for which 1− 4/u is a rational
square (say, u = −4

q2−1
for q 6= ±1 a rational number).
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§3 IMO 2008/3

Prove that there are infinitely many positive integers n such that n2 + 1 has a prime factor greater

than 2n +
√

2n.

The idea is to pick the prime p first!
Select any large prime p ≥ 2013, and let h =

⌈√
p
⌉
. We will try to find an n such that

n ≤ 1

2
(p− h) and p | n2 + 1.

This implies p ≥ 2n +
√
p which is enough to ensure p ≥ 2n +

√
2n.

Assume p ≡ 1 (mod 8) henceforth. Then there exists some 1
2p < x < p such that

x2 ≡ −1 (mod p), and we set

x =
p + 1

2
+ t.

Claim — We have t ≥ h−1
2 and hence may take n = p− x.

Proof. Assume for contradiction this is false; then

0 ≡ = 4(x2 + 1) (mod p)

= (p + 1 + 2t)2 + 4

≡ (2t + 1)2 + 4 (mod p)

< h2 + 4

So we have that (2t + 1)2 + 4 is positive and divisible by p, yet at most
⌈√

p
⌉2

+ 4 < 2p.
So it must be the case that (2t + 1)2 + 4 = p, but this has no solutions modulo 8.
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§4 IMO 2008/4

Find all functions f from the positive reals to the positive reals such that

f(w)2 + f(x)2

f(y2) + f(z2)
=

w2 + x2

y2 + z2

for all positive real numbers w, x, y, z satisfying wx = yz.

The answers are f(x) ≡ x and f(x) ≡ 1/x. These work, so we show they are the only
ones.

First, setting (t, t, t, t) gives f(t2) = f(t)2. In particular, f(1) = 0. Next, setting
(t, 1,

√
t,
√
t) gives

f(t)2 + 1

2f(t)
=

t2 + 1

2t

which as a quadratic implies f(t) ∈ {t, 1/t}.
Now assume f(a) = a and f(b) = 1/b. Setting (

√
a,
√
b, 1,
√
ab) gives

a + 1/b

f(ab) + 1
=

a + b

ab + 1
.

One can check the two cases on f(ab) each imply a = 1 and b = 1 respectively. Hence
the only answers are those claimed.
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§5 IMO 2008/5

Let n and k be positive integers with k ≥ n and k − n an even number. There are 2n lamps

labelled 1, 2, . . . , 2n each of which can be either on or off. Initially all the lamps are off. We

consider sequences of steps: at each step one of the lamps is switched (from on to off or from off

to on). Let N be the number of such sequences consisting of k steps and resulting in the state

where lamps 1 through n are all on, and lamps n + 1 through 2n are all off. Let M be number of

such sequences consisting of k steps, resulting in the state where lamps 1 through n are all on,

and lamps n + 1 through 2n are all off, but where none of the lamps n + 1 through 2n is ever

switched on. Determine N
M .

Answer is 2k−n.
We construct a map from N -sequences to M -sequences as follows: just change every

instance of n + 1 to 1, n + 2 to 2, and so on.
Clearly this is well-defined and surjective. (Example: suppose k = 9, n = 3, and we

denote the lamps by A, B, C, X, Y , Z. Then AXXBBY BY C 7→ AAABBBBBC.)
We claim that every M -sequence has exactly 2n−k pre-images. Indeed, suppose that

there are c1 instances of lamp 1. Then we want to pick an odd subset of the 1’s to change
to n + 1’s, so 2c1−1 ways.

(The hard part is finding the answer; the rest is a pretty clear bijection. Mainly looking
at small cases is enough. Note how little certain things actually matter.)
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§6 IMO 2008/6

Let ABCD be a convex quadrilateral with BA 6= BC. Denote the incircles of triangles ABC and

ADC by ω1 and ω2 respectively. Suppose that there exists a circle ω tangent to ray BA beyond

A and to the ray BC beyond C, which is also tangent to the lines AD and CD. Prove that the

common external tangents to ω1 and ω2 intersect on ω.

By the external version of Pitot theorem, the existence of ω implies that

BA + AD = CB + CD.

Let PQ and ST be diameters of ω1 and ω2 with P, T ∈ AC. Then the length relation on
ABCD implies that P and T are reflections about the midpoint of AC.

Now orient AC horizontally and let K be the “uppermost” point of ω, as shown.

W

X

Y

Z

A

B

C

D

P

Q

T

S

K

Consequently, a homothety at B maps Q, T , K to each other (since T is the uppermost
of the excircle, Q of the incircle). Similarly, a homothety at D maps P , S, K to each
other. As PQ and ST are parallel diameters it then follows K is the exsimilicenter of ω1

and ω2.
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