
IMO 2007 Solution Notes
Evan Chen《陳誼廷》

8 December 2023

This is a compilation of solutions for the 2007 IMO. Some of the solutions
are my own work, but many are from the official solutions provided by the
organizers (for which they hold any copyrights), and others were found by
users on the Art of Problem Solving forums.

These notes will tend to be a bit more advanced and terse than the “official”
solutions from the organizers. In particular, if a theorem or technique is not
known to beginners but is still considered “standard”, then I often prefer to
use this theory anyways, rather than try to work around or conceal it. For
example, in geometry problems I typically use directed angles without further
comment, rather than awkwardly work around configuration issues. Similarly,
sentences like “let R denote the set of real numbers” are typically omitted
entirely.

Corrections and comments are welcome!
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§0 Problems
1. Real numbers a1, a2, . . . , an are fixed. For each 1 ≤ i ≤ n we let di = max{aj :

1 ≤ j ≤ i} − min{aj : i ≤ j ≤ n} and let d = max{di : 1 ≤ i ≤ n}.

(a) Prove that for any real numbers x1 ≤ · · · ≤ xn we have

max {|xi − ai| : 1 ≤ i ≤ n} ≥ 1

2
d.

(b) Moreover, show that there exists some choice of x1 ≤ · · · ≤ xn which achieves
equality.

2. Consider five points A, B, C, D and E such that ABCD is a parallelogram and
BCED is a cyclic quadrilateral. Let ` be a line passing through A. Suppose that
` intersects the interior of the segment DC at F and intersects line BC at G.
Suppose also that EF = EG = EC. Prove that ` is the bisector of angle DAB.

3. In a mathematical competition some competitors are (mutual) friends. Call a group
of competitors a clique if each two of them are friends. Given that the largest size
of a clique is even, prove that the competitors can be arranged into two rooms such
that the largest size of a clique contained in one room is the same as the largest
size of a clique contained in the other room.

4. In triangle ABC the bisector of ∠BCA meets the circumcircle again at R, the
perpendicular bisector of BC at P , and the perpendicular bisector of AC at Q.
The midpoint of BC is K and the midpoint of AC is L. Prove that the triangles
RPK and RQL have the same area.

5. Let a and b be positive integers. Show that if 4ab− 1 divides (4a2− 1)2, then a = b.

6. Let n be a positive integer. Consider

S = {(x, y, z) | x, y, z ∈ {0, 1, . . . , n}, x+ y + z > 0}

as a set of (n+1)3−1 points in the three-dimensional space. Determine the smallest
possible number of planes, the union of which contains S but does not include
(0, 0, 0).
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§1 Solutions to Day 1
§1.1 IMO 2007/1
Available online at https://aops.com/community/p893741.

Problem statement

Real numbers a1, a2, . . . , an are fixed. For each 1 ≤ i ≤ n we let di = max{aj : 1 ≤
j ≤ i} − min{aj : i ≤ j ≤ n} and let d = max{di : 1 ≤ i ≤ n}.

(a) Prove that for any real numbers x1 ≤ · · · ≤ xn we have

max {|xi − ai| : 1 ≤ i ≤ n} ≥ 1

2
d.

(b) Moreover, show that there exists some choice of x1 ≤ · · · ≤ xn which achieves
equality.

Note that we can dispense of di immediately by realizing that the definition of d just says

d = max
1≤i≤j≤n

(ai − aj) .

If a1 ≤ · · · ≤ an are already nondecreasing then d = 0 and there is nothing to prove
(for the equality case, just let xi = ai), so we will no longer consider this case.

Otherwise, consider any indices i < j with ai > aj . We first prove (a) by applying the
following claim with p = ai and q = aj :

Claim — For any p ≤ q, we have either |p−ai| ≥ 1
2(ai−aj) or |q−aj | ≥ 1

2(ai−aj).

Proof. Assume for contradiction both are false. Then p > ai− 1
2(ai−aj) = aj+

1
2(ai−aj) >

q, contradiction.

As for (b), we let i < j be any indices for which ai − aj = d > 0 achieves the maximal
difference. We then define x• in three steps:

• We set xk =
ai+aj

2 for k = i, . . . , j.

• We recursively set xk = max(xk−1, ak) for k = j + 1, j + 2, . . . .

• We recursively set xk = min(xk+1, ak) for k = i− 1, i− 2, . . . .

By definition, these x• are weakly increasing. To prove this satisfies (b) we only need to
check that

|xk − ak| ≤
ai − aj

2
(?)

for any index k (as equality holds for k = i or k = j).
We note (?) holds for i < k < j by construction. For k > j, note that xk ∈

{aj , aj+1, . . . , ak} by construction, so (?) follows from our choice of i and j giving the
largest possible difference; the case k < i is similar.
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§1.2 IMO 2007/2, proposed by Charles Leytem (LUX)
Available online at https://aops.com/community/p893744.

Problem statement

Consider five points A, B, C, D and E such that ABCD is a parallelogram and
BCED is a cyclic quadrilateral. Let ` be a line passing through A. Suppose that `
intersects the interior of the segment DC at F and intersects line BC at G. Suppose
also that EF = EG = EC. Prove that ` is the bisector of angle DAB.

Let M , N , P denote the midpoints of CF , CG, AC (noting P is also the midpoint of
BD).

By a homothety at C with ratio 1
2 , we find MNP is the image of line ` ≡ AGF .

C D

E

B A

M

N

P

F

G

However, since we also have EM ⊥ CF and EN ⊥ CG (from EF = EG = EC) we
conclude PMN is the Simson line of E with respect to 4BCD, which implies EP ⊥ BD.
In other words, EP is the perpendicular bisector of BD, so E is the midpoint of arc’BCD.

Finally,

](AB, `) = ](CD,MNP ) = ]CMN = ]CEN

= 90◦ − ]NCE = 90◦ + ]ECB

which means that ` is parallel to a bisector of ∠BCD, and hence to one of ∠BAD.
(Moreover since F lies on the interior of CD, it is actually the internal bisector.)
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§1.3 IMO 2007/3, proposed by Vasily Astakhov (RUS)
Available online at https://aops.com/community/p893746.

Problem statement

In a mathematical competition some competitors are (mutual) friends. Call a group
of competitors a clique if each two of them are friends. Given that the largest size of
a clique is even, prove that the competitors can be arranged into two rooms such
that the largest size of a clique contained in one room is the same as the largest size
of a clique contained in the other room.

Take the obvious graph interpretation G. We paint red any vertices in one of the maximal
cliques K, which we assume has 2r vertices, and paint the remaining vertices green. We
let α(•) denote the clique number.

Initially, let the two rooms A = K, B = G−K.

Claim — We can move at most r vertices of A into B to arrive at α(A) ≤ α(B) ≤
α(A) + 1.

Proof. This is actually obvious by discrete continuity. We move one vertex at a time,
noting α(A) decreases by one at each step, while α(B) increases by either zero or one at
each step.

We stop once α(B) ≥ α(A), which happens before we have moved r vertices (since
then we have α(B) ≥ r = α(A)). The conclusion follows.

So let’s consider the situation

α(A) = k ≥ r and α(B) = k + 1.

At this point A is a set of k red vertices, while B has the remaining 2r− k red vertices
(and all the green ones). An example is shown below with k = 4 and 2r = 6.

A

α(A) = k

k red vertices

B

α(B) = k + 1

2r − k red vertices

Now, if we can move any red vertex from B back to A without changing the clique
number of B, we do so, and win.

Otherwise, it must be the case that every (k + 1)-clique in B uses every red vertex in
B. For each (k + 1)-clique in B (in arbitrary order), we do the following procedure.
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• If all k + 1 vertices are still green, pick one and re-color it blue. This is possible
since k + 1 > 2r − k.

• Otherwise, do nothing.

Then we move all the blue vertices from B to A, one at a time, in the same order we
re-colored them. This forcibly decreases the clique number of B to k, since the clique
number is k + 1 just before the last blue vertex is moved, and strictly less than k + 1
(hence equal to k) immediately after that.

Claim — After this, α(A) = k still holds.

Proof. Assume not, and we have a (k+1)-clique which uses b blue vertices and (k+1)−b
red vertices in A. Together with the 2r− k red vertices already in B we then get a clique
of size

b+ ((k + 1− b)) + (2r − k) = 2r + 1

which is a contradiction.

Remark. Dragomir Grozev posted the following motivation on his blog:

I think, it’s a natural idea to place all students in one room and begin moving
them one by one into the other one. Then the max size of the cliques in the
first and second room increase (resp. decrease) at most with one. So, there
would be a moment both sizes are almost the same. At that moment we may
adjust something.
Trying the idea, I had some difficulties keeping track of the maximal cliques
in the both rooms. It seemed easier all the students in one of the rooms to
comprise a clique. It could be achieved by moving only the members of the
maximal clique. Following this path the remaining obstacles can be overcome
naturally.
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§2 Solutions to Day 2
§2.1 IMO 2007/4, proposed by Marek Pechal (CZE)
Available online at https://aops.com/community/p894655.

Problem statement

In triangle ABC the bisector of ∠BCA meets the circumcircle again at R, the
perpendicular bisector of BC at P , and the perpendicular bisector of AC at Q. The
midpoint of BC is K and the midpoint of AC is L. Prove that the triangles RPK
and RQL have the same area.

We first begin by proving the following claim.

Claim — We have CQ = PR (equivalently, CP = QR).

Proof. Let O = LQ ∩KP be the circumcenter. Then

]OPQ = ]KPC = 90◦ − ]PCK = 90◦ − ]LCQ = ]]CQL = ]PQO.

Thus OP = OQ. Since OC = OR as well, we get the conclusion.

Denote by X and Y the feet from R to CA and CB, so 4CXR ∼= 4CY R. Then, let
t = CQ

CR = 1− CP
CR .

C

R

X Y

Q

P

L

K

A

B

O

Then it follows that

[RQL] = [XQL] = t(1− t) · [XRC] = t(1− t) · [Y CR] = [Y KP ] = [RKP ]

as needed.

Remark. Trigonometric approaches are very possible (and easier to find) as well: both
areas work out to be 1

8ab tan 1
2C.
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§2.2 IMO 2007/5, proposed by Kevin Buzzard, Edward Crane (UNK)
Available online at https://aops.com/community/p894656.

Problem statement

Let a and b be positive integers. Show that if 4ab− 1 divides (4a2 − 1)2, then a = b.

As usual,

4ab− 1 | (4a2 − 1)2 ⇐⇒ 4ab− 1 | (4ab · a− b)2 ⇐⇒ 4ab− 1 | (a− b)2.

Then we use a typical Vieta jumping argument. Define

k =
(a− b)2

4ab− 1
.

Note that k = 0 ⇐⇒ a = b. So we will prove that k > 0 leads to a contradiction.
Indeed, suppose (a, b) is a minimal solution with a > b (we have a 6= b since k 6= 0).

By Vieta jumping, (b, b2+k
a ) is also such a solution. But now

b2 + k

a
≥ a =⇒ k ≥ a2 − b2

=⇒ (a− b)2

4ab− 1
≥ a2 − b2

=⇒ a− b ≥ (4ab− 1)(a+ b)

which is absurd for a, b ∈ Z>0. (In the last step we divided by a− b > 0.)
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§2.3 IMO 2007/6
Available online at https://aops.com/community/p894658.

Problem statement

Let n be a positive integer. Consider

S = {(x, y, z) | x, y, z ∈ {0, 1, . . . , n}, x+ y + z > 0}

as a set of (n+1)3−1 points in the three-dimensional space. Determine the smallest
possible number of planes, the union of which contains S but does not include
(0, 0, 0).

The answer is 3n. Here are two examples of constructions with 3n planes:

• x+ y + z = i for i = 1, . . . , 3n.

• x = i, y = i, z = i for i = 1, . . . , n.

Suppose for contradiction we have N < 3n planes. Let them be aix+ biy + ciz + 1 = 0,
for i = 1, . . . , N . Define the polynomials

A(x, y, z) =
n∏

i=1

(x− i)
n∏

i=1

(y − i)
n∏

i=1

(z − i)

B(x, y, z) =
N∏
i=1

(aix+ biy + ciz + 1) .

Note that A(0, 0, 0) = (−1)n(n!)3 6= 0 and B(0, 0, 0) = 1 6= 0, but A(x, y, z) =
B(x, y, z) = 0 for any (x, y, z) ∈ S. Also, the coefficient of xnynzn in A is 1, while
the coefficient of xnynzn in B is 0.

Now, define
P (x, y, z) := A(x, y, z)− λB(x, y, z).

where λ = A(0,0,0)
B(0,0,0) = (−1)n(n!)3. We now have that

• P (x, y, z) = 0 for any x, y, z ∈ {0, 1, . . . , n}3.

• But the coefficient of xnynzn is 1.

This is a contradiction to Alon’s combinatorial nullstellensatz.
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