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25 February 2024

This is a compilation of solutions for the 2004 IMO. Some of the solutions
are my own work, but many are from the official solutions provided by the
organizers (for which they hold any copyrights), and others were found by
users on the Art of Problem Solving forums.

These notes will tend to be a bit more advanced and terse than the “official”
solutions from the organizers. In particular, if a theorem or technique is not
known to beginners but is still considered “standard”, then I often prefer to
use this theory anyways, rather than try to work around or conceal it. For
example, in geometry problems I typically use directed angles without further
comment, rather than awkwardly work around configuration issues. Similarly,
sentences like “let R denote the set of real numbers” are typically omitted
entirely.

Corrections and comments are welcome!
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§0 Problems
1. Let ABC be an acute-angled triangle with AB 6= AC. The circle with diameter

BC intersects the sides AB and AC at M and N respectively. Denote by O the
midpoint of the side BC. The bisectors of the angles ∠BAC and ∠MON intersect
at R. Prove that the circumcircles of the triangles BMR and CNR have a common
point lying on the side BC.

2. Find all polynomials P with real coefficients such that for all reals a, b, c such that
ab+ bc+ ca = 0, we have

P (a− b) + P (b− c) + P (c− a) = 2P (a+ b+ c).

3. Define a “hook” to be a figure made up of six unit squares as shown below in the
picture, or any of the figures obtained by applying rotations and reflections to this
figure.

Which m× n rectangles can be tiled by hooks?

4. Let n ≥ 3 be an integer and t1, t2, . . . , tn positive real numbers such that

n2 + 1 > (t1 + t2 + · · ·+ tn)

(
1

t1
+

1

t2
+ · · ·+ 1

tn

)
.

Show that ti, tj , tk are the sides of a triangle for all i, j, k with 1 ≤ i < j < k ≤ n.

5. In a convex quadrilateral ABCD, the diagonal BD bisects neither the angle ABC
nor the angle CDA. The point P lies inside ABCD and satisfies

∠PBC = ∠DBA and ∠PDC = ∠BDA.

Prove that ABCD is a cyclic quadrilateral if and only if AP = CP .

6. We call a positive integer alternating if every two consecutive digits in its decimal
representation are of different parity. Find all positive integers n which have an
alternating multiple.
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§1 Solutions to Day 1
§1.1 IMO 2004/1
Available online at https://aops.com/community/p99445.

Problem statement

Let ABC be an acute-angled triangle with AB 6= AC. The circle with diameter
BC intersects the sides AB and AC at M and N respectively. Denote by O the
midpoint of the side BC. The bisectors of the angles ∠BAC and ∠MON intersect
at R. Prove that the circumcircles of the triangles BMR and CNR have a common
point lying on the side BC.

By Miquel’s theorem it’s enough to show AMRN is cyclic.

A

B C

HM

N

O

R

In fact, since the bisector of ∠MON is just the perpendicular bisector of MN , the point
R is actually just the arc midpoint of ‘MN of (AMN) as desired.
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§1.2 IMO 2004/2
Available online at https://aops.com/community/p99448.

Problem statement

Find all polynomials P with real coefficients such that for all reals a, b, c such that
ab+ bc+ ca = 0, we have

P (a− b) + P (b− c) + P (c− a) = 2P (a+ b+ c).

The answer is
P (x) = αx4 + βx2

which can be checked to work, for any real numbers α and β.
It is easy to obtain that P is even and P (0) = 0. The trick is now to choose

(a, b, c) = (6x, 3x,−2x) and then compare the leading coefficients to get

3n + 5n + 8n = 2 · 7n

for n = deg f (which is even). As n ≥ 7 =⇒ (8/7)n > 2, this means that we must have
n ≤ 6. Moreover, taking modulo 7 we have 3n + 5n ≡ 6 (mod 7) which gives n ≡ 2, 4
(mod 6).

Thus degP ≤ 4, which (combined with P even) resolves the problem.

4

http://web.evanchen.cc
https://aops.com/community/p99448


IMO 2004 Solution Notes web.evanchen.cc, updated 25 February 2024

§1.3 IMO 2004/3
Available online at https://aops.com/community/p99450.

Problem statement

Define a “hook” to be a figure made up of six unit squares as shown below in the
picture, or any of the figures obtained by applying rotations and reflections to this
figure.

Which m× n rectangles can be tiled by hooks?

The answer is that one requires:

• {1, 2, 5} /∈ {m,n},

• 3 | m or 3 | n,

• 4 | m or 4 | n.

First, we check all of these work, in fact we claim:

Claim — Any rectangle satisfying these conditions can be tiled by 3× 4 rectangles
(and hence by hooks).

Proof. In fact it will be sufficient to tile with 3× 4 rectangles. If 3 | m and 4 | n, this is
clear. Else suppose 12 | m but 3 - n, 4 - n. Then n ≥ 7, so it can be written in the form
3a+ 4b for nonengative integers a and b, which permits a tiling.

We now prove these conditions are necessary. It is not hard to see that m,n ∈ {1, 2, 5}
is necessary.

We thus turn our attention to divisibility conditions. Each hook has a hole, and if we
associate each hook with the one that fills its hole, we get a bijective pairing of hooks.
Thus the number of cells is divisible by 12, and the cells come in two types of tiles shown
below (rotations and reflections permitted).

In particular, the total number of cells is divisible by 12. Thus the problem is reduce
to proving that:

Claim — if a 6a× 2b rectangle is tiled by tiles, then at least one of a and b is even.

Proof. Note that the tiles come in two forms:
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• First type: These tiles have exactly four columns, each with exactly three cells
(an odd number). Moreover, all rows have an even number of cells (either 2 or 4).

• Second type: vice-versa. These tiles have exactly four rows, each with exactly
three cells (an odd number). Moreover, all rows have an odd number of cells.

We claim that any tiling uses an even number of each type, which is enough.
By symmetry we prove an even number of first-type tiles. Color red every fourth

column of the rectangle. The number of cells colored is red. The tiles of the second type
cover an even number of red cells, and the tiles of the first type cover an odd number of
red cells. Hence the number of tiles of the first type must be even.

Remark. This shows that a rectangle can be tiled by hooks iff it can be tiled by 3 × 4
rectangles. But there exists tilings which do not decompose into 3 × 4; see e.g. https:
//aops.com/community/c6h14023p99881.
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§2 Solutions to Day 2
§2.1 IMO 2004/4
Available online at https://aops.com/community/p99756.

Problem statement

Let n ≥ 3 be an integer and t1, t2, . . . , tn positive real numbers such that

n2 + 1 > (t1 + t2 + · · ·+ tn)

(
1

t1
+

1

t2
+ · · ·+ 1

tn

)
.

Show that ti, tj , tk are the sides of a triangle for all i, j, k with 1 ≤ i < j < k ≤ n.

Let a = t1, b = t2, c = t3. Expand:

n2 + 1 > (t1 + t2 + · · ·+ tn)

(
1

t1
+ · · ·+ 1

tn

)
= n+

∑
1≤i<j≤n

(
ti
tj

+
tj
ti

)

= n+
∑

1≤i<j≤n

(
ti
tj

+
tj
ti

)

≥ n+
∑

1≤i<j≤3

(
ti
tj

+
tj
ti

)
+

∑
1≤i<j≤n

j>3

2

= n+ 2

((
n

2

)
− 3

)
+

(
a

b
+

b

a

)
+

a+ b

c
+

c

b
+

c

a

≥ n+ 2

((
n

2

)
− 3

)
+ 2 +

a+ b

c
+ c · 4

a+ b

So, we conclude that
a+ b

c
+

4c

a+ b
< 5

which rearranges to
(4c− (a+ b)) (c− (a+ b)) < 0.

This is enough to imply c ≤ a+ b.

Remark. A variant of the same argument allows one to improve the left-hand side to
(n+

√
10− 3)2. One does so by writing

RHS ≥

(√
(a+ b+ c)

(
1

a
+

1

b
+

1

c

)
+ (n− 3)

)2

and estimating the square root as in the previous approach.
In addition, (n +

√
10 − 3)2 is best possible, as seen by taking (a, b, c) = (2, 1, 1) and

t4 = t5 = · · · = 2
5

√
10.
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§2.2 IMO 2004/5, proposed by Waldemar Pompe
Available online at https://aops.com/community/p99759.

Problem statement

In a convex quadrilateral ABCD, the diagonal BD bisects neither the angle ABC
nor the angle CDA. The point P lies inside ABCD and satisfies

∠PBC = ∠DBA and ∠PDC = ∠BDA.

Prove that ABCD is a cyclic quadrilateral if and only if AP = CP .

Apply barycentric coordinates to 4PBD with P = (1, 0, 0), B = (0, 1, 0) and D =
(0, 0, 1). Define a = BD, b = DP and c = PB.

Since A and C are isogonal conjugates with respect to 4PBD, we set

A = (au : bv : cw) and C =

(
a

u
:
b

v
:
c

w

)
.

For brevity define M = au+ bv + cw and N = avw + bwu+ cuv.
We now compute each condition.

Claim — Quadrilateral ABCD is cyclic if and only if N2 = u2M2.

Proof. W know a circle through B and D is a locus of points with

a2yz + b2zx+ c2xy

x(x+ y + z)

is equal to some constant. Therefore quadrilateral ABCD is cyclic if and only if abc·N
au·M is

equal to abc·uvw·M
avw·N which rearranges to N2 = u2M2.

Claim — We have PA = PC if and only if N2 = u2M2.

Proof. We have the displacement vector
−→
PA = 1

M (bv + cw,−bv,−cw). Therefore,

M2 · |PA|2 = −a2(bv)(cw) + b2(cw)(bv + cw) + c2(bv)(bv + cw)

= bc(−a2vw + (bw + cv)(bv + cw)).

In a similar way (by replacing u, v, w with their inverses) we have(
N

uvw

)2

· |PC|2 = (vw)−2 · bc(−a2vw + (bv + cw)(bw + cv))

⇐⇒ N2 · |PC|2 = u2bc(−a2vw + (bw + cv)(bv + cw))

These are equal if and only if N2 = u2M2, as desired.
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§2.3 IMO 2004/6
Available online at https://aops.com/community/p99760.

Problem statement

We call a positive integer alternating if every two consecutive digits in its decimal
representation are of different parity. Find all positive integers n which have an
alternating multiple.

If 20 | n, then clearly n has no alternating multiple since the last two digits are both
even. We will show the other values of n all work.

The construction is just rush-down do-it. The meat of the solution is the two following
steps.

Claim (Tail construction) — For every even integer w ≥ 2,

• there exists an even alternating multiple g(w) of 2w+1 with exactly w digits,
and

• there exists an even alternating multiple h(w) of 5w with exactly w digits.

(One might note this claim is implied by the problem, too.)

Proof. We prove the first point by induction on w. If w = 2, take g(2) = 32. In general,
we can construct g(w + 2) from g(w) by adding some element in

10w · {10, 12, 14, 16, 18, 30, . . . , 98}

to g(w), corresponding to the digits we want to append to the start. This multiple is
automatically divisible by 2w+1, and also can take any of the four possible values modulo
2w+3.

The second point is a similar induction, with base case h(2) = 50. The same set above
consists of numbers divisible by 5w, and covers all residues modulo 5w+2. Careful readers
might recognize the second part as essentially USAMO 2003/1.

Claim (Head construction) — If gcd(n, 10) = 1, then for any b, there exists an even
alternating number f(b mod n) which is b (mod n).

Proof. A standard argument shows that

10 · 100
m − 1

99
= 1010 . . . 10︸ ︷︷ ︸

m 10’s

≡ 0 (mod n)

for any m divisible by ϕ(99n). Take a very large such m, and then add on b distinct
numbers of the form 10ϕ(n)r for various even values of r; these all are 1 (mod n) and
change some of the 1’s to 3’s.

Now, we can solve the problem. Consider three cases:
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• If n = 2km where gcd(m, 10) = 1 and k ≥ 2 is even, then the concatenated number

10kf

(
−g(k)

10k
mod m

)
+ g(k)

works fine.

• If n = 5km where gcd(m, 10) = 1 and k ≥ 2 is even, then the concatenated number

10kf

(
−h(k)

10k
mod m

)
+ h(k)

works fine.

• If n = 50m where gcd(m, 10) = 1, then the concatenated number

100f

(
−1

2
mod m

)
+ 50

works fine.

Since every non-multiple of 20 divides such a number, we are done.
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