IMO 2003 Solution Notes

Evan Chen《陳誼廷》

8 December 2023

This is a compilation of solutions for the 2003 IMO．Some of the solutions are my own work，but many are from the official solutions provided by the organizers（for which they hold any copyrights），and others were found by users on the Art of Problem Solving forums．

These notes will tend to be a bit more advanced and terse than the＂official＂ solutions from the organizers．In particular，if a theorem or technique is not known to beginners but is still considered＂standard＂，then I often prefer to use this theory anyways，rather than try to work around or conceal it．For example，in geometry problems I typically use directed angles without further comment，rather than awkwardly work around configuration issues．Similarly， sentences like＂let \mathbb{R} denote the set of real numbers＂are typically omitted entirely．

Corrections and comments are welcome！

Contents

0 Problems 2
1 Solutions to Day 1 3
1．1 IMO 2003／1 3
1．2 IMO 2003／2 4
1．3 IMO 2003／3 5
2 Solutions to Day 2 7
2．1 IMO 2003／4 7
2．2 IMO 2003／5 8
2.3 IMO 2003／6 10

§0 Problems

1. Let A be a 101 -element subset of $S=\left\{1,2, \ldots, 10^{6}\right\}$. Prove that there exist numbers $t_{1}, t_{2}, \ldots, t_{100}$ in S such that the sets

$$
A_{j}=\left\{x+t_{j} \mid x \in A\right\}, \quad j=1,2, \ldots, 100
$$

are pairwise disjoint.
2. Determine all pairs of positive integers (a, b) such that

$$
\frac{a^{2}}{2 a b^{2}-b^{3}+1}
$$

is a positive integer.
3. Each pair of opposite sides of convex hexagon has the property that the distance between their midpoints is $\frac{\sqrt{3}}{2}$ times the sum of their lengths. Prove that the hexagon is equiangular.
4. Let $A B C D$ be a cyclic quadrilateral. Let P, Q and R be the feet of perpendiculars from D to lines $\overline{B C}, \overline{C A}$ and $\overline{A B}$, respectively. Show that $P Q=Q R$ if and only if the bisectors of angles $A B C$ and $A D C$ meet on segment $\overline{A C}$.
5. Let n be a positive integer and let $x_{1} \leq x_{2} \leq \cdots \leq x_{n}$ be real numbers. Prove that

$$
\left(\sum_{i=1}^{n} \sum_{j=1}^{n}\left|x_{i}-x_{j}\right|\right)^{2} \leq \frac{2\left(n^{2}-1\right)}{3} \sum_{i=1}^{n} \sum_{j=1}^{n}\left(x_{i}-x_{j}\right)^{2}
$$

with equality if and only if $x_{1}, x_{2}, \ldots, x_{n}$ form an arithmetic sequence.
6. Let p be a prime number. Prove that there exists a prime number q such that for every integer n, the number $n^{p}-p$ is not divisible by q.

§1 Solutions to Day 1

§1.1 IMO 2003/1

Available online at https://aops.com/community/p261.

Problem statement

Let A be a 101 -element subset of $S=\left\{1,2, \ldots, 10^{6}\right\}$. Prove that there exist numbers $t_{1}, t_{2}, \ldots, t_{100}$ in S such that the sets

$$
A_{j}=\left\{x+t_{j} \mid x \in A\right\}, \quad j=1,2, \ldots, 100
$$

are pairwise disjoint.

A greedy algorithm works: suppose we have picked

$$
T=\left\{t_{1}, \ldots, t_{n}\right\}
$$

as large as possible, meaning it's impossible to add any more elements to T. That means, for each $t \in\left\{1, \ldots, 10^{6}\right\}$ either $t \in T$ already or there exists two distinct elements $a, b \in A$ and $t_{i} \in T$ such that

$$
t=t_{i}+b-a \quad(\star) .
$$

There are at most $|T| \cdot|A| \cdot(|A|-1)=n \cdot 101 \cdot 100$ possible values for the right-hand side of (\star). So we therefore must have

$$
101 \cdot 100 \cdot n+n \geq 10^{6}
$$

which implies $n>99$, as desired.
Remark. It is possible to improve the bound significantly with a small optimization; rather than adding any t, we require that $t_{1}<\cdots<t_{n}$ and that at each step we add the least $t \in S$ which is permitted. In that case, one finds we only need to consider $b>a$ in (\star), and so this will save us a factor of $2+o(1)$ as the main term $101 \cdot 100$ becomes $\binom{101}{2}$ instead. This proves it's possible to choose 198 elements.

See, e.g., https://aops.com/community/p22959828 for such a write-up.

§1.2 IMO 2003/2

Available online at https://aops.com/community/p262.

Problem statement

Determine all pairs of positive integers (a, b) such that

$$
\frac{a^{2}}{2 a b^{2}-b^{3}+1}
$$

is a positive integer.

The answer is $(a, b)=(2 \ell, 1),(a, b)=(\ell, 2 \ell)$ and $(a, b)=\left(8 \ell^{4}-\ell, 2 \ell\right)$, for any ℓ. Check these work.

In the sequel, assume $b>1$, and integers a, b, k obey $k=\frac{a^{2}}{2 a b^{2}-b^{3}+1}$. Expanding, we have the polynomial

$$
X^{2}-2 k b^{2} \cdot X+k\left(b^{3}-1\right)=0
$$

has two integer roots, one of which is $X=a$. This means solutions to the original problem come in pairs (even with k fixed):

$$
(a, b) \longleftrightarrow\left(2 k b^{2}-a, b\right)=\left(\frac{k\left(b^{3}-1\right)}{a}, b\right)
$$

(Here, the first representation ensures $2 k b^{2}-a \in \mathbb{Z}$, while the latter representation and the hypothesis $b>1$ ensures that $\frac{k\left(b^{3}-1\right)}{a}>0$.)

On the other hand, we claim that:
Claim - For any solution (a, b), either $2 a=b$ or $a>b$.

Proof. Since the denominator is positive, $a \geq b / 2$. Now,

$$
a^{2} \geq 2 a b^{2}-b^{3}+1 \Longleftrightarrow a^{2} \geq b^{2}(2 a-b)+1
$$

and so if $2 a-b>0$ then $a^{2}>b^{2} \Longrightarrow a>b$.
Now assume we have pair $\left(a_{1}, b\right)$ and $\left(a_{2}, b\right)$ of solutions with $b \neq 2 a_{1}, 2 a_{2}$. Then assume $a_{1}>a_{2}>b$ and

$$
\begin{aligned}
a_{1}+a_{2} & =2 k \cdot b^{2} \\
a_{1} a_{2} & =k\left(b^{3}-1\right)
\end{aligned}
$$

That's impossible, since then $a_{1}>\frac{a_{1}+a_{2}}{2}=k b^{2}$ and hence $a_{1} a_{2}>k b^{2} \cdot b=k b^{3}$. Thus the only solutions are the ones we claimed at the beginning.

Remark. Important to notice that the problem is positive divides, not just divides. There is an implicit inequality built in to the problem statement and it is essentially impossible to solve without. I would be interested in a pair (a, b) for which $k<0, k \in \mathbb{Z}$ yet $a, b>0$.

§1.3 IMO 2003/3

Available online at https://aops.com/community/p263.

Problem statement

Each pair of opposite sides of convex hexagon has the property that the distance between their midpoints is $\frac{\sqrt{3}}{2}$ times the sum of their lengths. Prove that the hexagon is equiangular.

Unsurprisingly, this is a geometric inequality. Denote the hexagon by $A B C D E F$. Then we have that

$$
\left|\frac{\vec{D}+\vec{E}}{2}-\frac{\vec{A}+\vec{B}}{2}\right|=\sqrt{3} \cdot \frac{|\vec{B}-\vec{A}|+|\vec{E}-\vec{D}|}{2} \geq \sqrt{3} \cdot\left|\frac{(\vec{B}-\vec{A})-(\vec{E}-\vec{D})}{2}\right|
$$

and cyclic variations. Suppose we define the right-hand sides as variables

$$
\begin{gathered}
\vec{x}=(\vec{B}-\vec{A})-(\vec{E}-\vec{D}) \\
\vec{y}=(\vec{D}-\vec{C})-(\vec{A}-\vec{F}) \\
\vec{z}=(\vec{F}-\vec{E})-(\vec{C}-\vec{B})
\end{gathered}
$$

Then we now have

$$
\begin{aligned}
& |\vec{y}-\vec{z}| \geq \sqrt{3}|\vec{x}| \\
& |\vec{z}-\vec{x}| \geq \sqrt{3}|\vec{y}| \\
& |\vec{x}-\vec{y}| \geq \sqrt{3}|\vec{z}| .
\end{aligned}
$$

We square all sides (using $|\vec{v}|^{2}=\vec{v} \cdot \vec{v}$) and then sum to get

$$
\sum_{\text {cyc }}(\vec{y}-\vec{z}) \cdot(\vec{y}-\vec{z}) \geq 3 \sum_{\text {cyc }} \vec{x} \cdot \vec{x}
$$

which rearranges to

$$
-|\vec{x}+\vec{y}+\vec{z}|^{2} \geq 0
$$

This can only happen if $\vec{x}+\vec{y}+\vec{z}=0$, and moreover all the inequalities above were actually equalities. That means that our triangle inequalities above were actually sharp (and already we have $\overline{A B} \| \overline{D E}$ and so on).

Working with just x and y now we have

$$
\begin{aligned}
3(\vec{x} \cdot \vec{x}) & =(2 \vec{y}-\vec{x}) \cdot(2 \vec{y}-\vec{x}) \\
& =\vec{x} \cdot \vec{x}-4 \vec{y} \cdot \vec{x}+4 \vec{y} \cdot \vec{y} \\
\Longrightarrow-\vec{x} \cdot \vec{x}+2(\vec{y} \cdot \vec{y}) & =2 \vec{x} \cdot \vec{y} \\
2(\vec{x} \cdot \vec{x})-\vec{y} \cdot \vec{y} & =2 \vec{x} \cdot \vec{y} .
\end{aligned}
$$

which implies $\vec{x} \cdot \vec{x}=\vec{y} \cdot \vec{y}$, that is, \vec{x} and \vec{y} have the same magnitude. In this way we find $\vec{x}, \vec{y}, \vec{z}$ all have the same magnitude, and since $\vec{x}+\vec{y}+\vec{z}=0$ they are related by 120° rotations, as desired.

Remark. In fact one can show further that the equiangular hexagons which work are exactly those formed by taking an equilateral triangle and cutting off equally sized corners. This equality case helps motivate the solution.

Remark. One can note this "must" be an inequality because the space of such hexagons is 2-dimensional, even though a priori the space of hexagons satisfying three given conditions should have dimension $9-3=6$.

§2 Solutions to Day 2

§2.1 IMO 2003/4

Available online at https://aops.com/community/p264.

Problem statement

Let $A B C D$ be a cyclic quadrilateral. Let P, Q and R be the feet of perpendiculars from D to lines $\overline{B C}, \overline{C A}$ and $\overline{A B}$, respectively. Show that $P Q=Q R$ if and only if the bisectors of angles $A B C$ and $A D C$ meet on segment $\overline{A C}$.

Let γ denote the circumcircle of $A B C D$. The condition on bisectors is equivalent to $(A C ; B D)_{\gamma}=-1$. Meanwhile if ∞ denotes the point at infinity along Simson line $\overline{P Q R}$ then $P Q=Q R$ if and only if $(P R ; Q \infty)=-1$.

Let rays $B Q$ and $D Q$ meet the circumcircle again at F and E.

Lemma (EGMO Proposition 4.1)
Then $\overline{B E} \| \overline{P Q R}$.

Proof. Since $\measuredangle D P R=\measuredangle D A R=\measuredangle D A B=\measuredangle D E B$.
Now we have

$$
(P R ; Q \infty) \stackrel{B}{=}(C A ; F E)_{\gamma} \stackrel{Q}{=}(A C ; B D)_{\gamma}
$$

as desired.

§2.2 IMO 2003/5

Available online at https://aops.com/community/p265.

Problem statement

Let n be a positive integer and let $x_{1} \leq x_{2} \leq \cdots \leq x_{n}$ be real numbers. Prove that

$$
\left(\sum_{i=1}^{n} \sum_{j=1}^{n}\left|x_{i}-x_{j}\right|\right)^{2} \leq \frac{2\left(n^{2}-1\right)}{3} \sum_{i=1}^{n} \sum_{j=1}^{n}\left(x_{i}-x_{j}\right)^{2}
$$

with equality if and only if $x_{1}, x_{2}, \ldots, x_{n}$ form an arithmetic sequence.

Let $d_{1}=x_{2}-x_{1}, \ldots, d_{n-1}=x_{n}-x_{n-1}$. The inequality in question becomes:

$$
\left(\sum_{i} i(n-i) d_{i}\right)^{2} \leq \frac{n^{2}-1}{3} \cdot\left(\sum_{i} i(n-i) d_{i}^{2}+2 \sum_{i<j} i(n-j) d_{i} d_{j}\right)
$$

Clearing the square on the right-hand side we want to show

$$
\sum_{i<j}\left(3 i j(n-i)(n-j)-\left(n^{2}-1\right) i(n-j)\right) \cdot 2 d_{i} d_{j} \leq \sum_{i}\left(n^{2}-1-3 i(n-i)\right) \cdot i(n-i) d_{i}^{2}
$$

We use AM-GM directly on $2 d_{i} d_{j} \leq d_{i}^{2}+d_{j}^{2}$: this actually solves the problem. The annoying part is to check that the coefficients actually match:

Claim (Big bash) - For an index $1 \leq k \leq n-1$, we have

$$
\begin{aligned}
& \sum_{i<k}\left(3 i k(n-i)(n-k)-\left(n^{2}-1\right) i(n-k)\right) \\
+ & \sum_{j>k}\left(3 k j(n-k)(n-j)-\left(n^{2}-1\right) k(n-j)\right) \\
= & \left(n^{2}-1-3 k(n-k)\right) \cdot k(n-k) .
\end{aligned}
$$

Proof. Rewrite as:

$$
\begin{aligned}
3 k(n-k)\left(-k(n-k)+\sum_{i} i(n-i)\right) & =\left(n^{2}-1\right)\left((n-k) \sum_{i<k} i+k \sum_{j>k}(n-j)\right) \\
& +\left(n^{2}-1-3 k(n-k)\right) \cdot k(n-k) \\
\Longleftrightarrow 3 k(n-k) \sum_{i} i(n-i) & =\left(n^{2}-1\right)\left((n-k) \sum_{i<k} i+k \sum_{j>k}(n-j)\right) \\
& +\left(n^{2}-1\right) k(n-k)-3 k^{2}(n-k)^{2} \\
\Longleftrightarrow 3 k(n-k)\left(\sum_{i} i(n-i)\right) & =\left(n^{2}-1\right)\left((n-k) \sum_{i \leq k} i+k \sum_{i<n-k} i\right) \\
\Longleftrightarrow 3 k(n-k) \frac{(n-1) n(n+1)}{6} & =\left(n^{2}-1\right)\left((n-k) \frac{k(k+1)}{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& +\left(n^{2}-1\right)\left(k \frac{(n-k)(n-k-1)}{2}\right) \\
\Longleftrightarrow 3 k(n-k) \frac{(n-1) n(n+1)}{6} & =\left(n^{2}-1\right) k(n-k) \cdot \frac{n}{2}
\end{aligned}
$$

which is visibly true.
Equality occurs only if all d_{i} are equal because the coefficient of $d_{i} d_{j}$ is nonzero for any $i \leq n / 2$ and $j \geq n / 2$.

§2.3 IMO 2003/6

Available online at https://aops.com/community/p266.

Problem statement

Let p be a prime number. Prove that there exists a prime number q such that for every integer n, the number $n^{p}-p$ is not divisible by q.

By orders, we must have $q=p k+1$ for this to be possible (since if $q \not \equiv 1(\bmod p)$, then n^{p} can be any residue modulo $\left.q\right)$. Since $p \equiv n^{p}(\bmod q) \Longrightarrow p^{k} \equiv 1(\bmod q)$, it suffices to prevent the latter situation from happening.

So we need a prime $q \equiv 1(\bmod p)$ such that $p^{k} \not \equiv 1(\bmod q)$. To do this, we first recall the following lemma.

Lemma

Let $\Phi_{p}(X)=1+X+X^{2}+\cdots+X^{p-1}$. For any integer a, if q is a prime divisor of $\Phi_{p}(a)$ other than p, then $a(\bmod q)$ has order p. (In particular, $q \equiv 1(\bmod p)$.)

Proof. We have $a^{p}-1 \equiv 0(\bmod q)$, so either the order is 1 or p. If it is 1 , then $a \equiv 1$ $(\bmod q)$, so $q \mid \Phi_{p}(1)=p$, hence $q=p$.

Now the idea is to extract a prime factor q from the cyclotomic polynomial

$$
\Phi_{p}(p)=\frac{p^{p}-1}{p-1} \equiv 1+p \quad\left(\bmod p^{2}\right)
$$

such that $q \not \equiv 1\left(\bmod p^{2}\right)$; hence $k \not \equiv 0(\bmod p)$, and as $p(\bmod q)$ has order p we have $p^{k} \not \equiv 1(\bmod q)$.

