
IMO 2002 Solution Notes
Evan Chen《陳誼廷》

11 December 2023

This is a compilation of solutions for the 2002 IMO. Some of the solutions
are my own work, but many are from the official solutions provided by the
organizers (for which they hold any copyrights), and others were found by
users on the Art of Problem Solving forums.

These notes will tend to be a bit more advanced and terse than the “official”
solutions from the organizers. In particular, if a theorem or technique is not
known to beginners but is still considered “standard”, then I often prefer to
use this theory anyways, rather than try to work around or conceal it. For
example, in geometry problems I typically use directed angles without further
comment, rather than awkwardly work around configuration issues. Similarly,
sentences like “let R denote the set of real numbers” are typically omitted
entirely.

Corrections and comments are welcome!
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§0 Problems
1. Let n be a positive integer. Let T be the set of points (x, y) in the plane where

x and y are non-negative integers with x + y < n. Each point of T is coloured
red or blue, subject to the following condition: if a point (x, y) is red, then so are
all points (x′, y′) of T with x′ ≤ x and y′ ≤ y. Let A be the number of ways to
choose n blue points with distinct x-coordinates, and let B be the number of ways
to choose n blue points with distinct y-coordinates. Prove that A = B.

2. Let BC be a diameter of circle ω with center O. Let A be a point of circle ω such
that 0◦ < ∠AOB < 120◦. Let D be the midpoint of arc AB not containing C. Line
` passes through O and is parallel to line AD. Line ` intersects line AC at J . The
perpendicular bisector of segment OA intersects circle ω at E and F . Prove that J
is the incenter of triangle CEF .

3. Find all pairs of positive integers m,n ≥ 3 for which there exist infinitely many
positive integers a such that

am + a− 1

an + a2 − 1

is itself an integer.

4. Let n ≥ 2 be a positive integer with divisors 1 = d1 < d2 < · · · < dk = n. Prove
that d1d2 + d2d3 + · · ·+ dk−1dk is always less than n2, and determine when it is a
divisor of n2.

5. Find all functions f : R → R such that

(f(x) + f(z)) (f(y) + f(t)) = f(xy − zt) + f(xt+ yz)

for all real numbers x, y, z, t.

6. Let n ≥ 3 be a positive integer. Let C1, C2, . . . , Cn be unit circles in the plane,
with centers O1, O2, . . . , On respectively. If no line meets more than two of the
circles, prove that ∑

1≤i<j≤n

1

OiOj
≤ (n− 1)π

4
.
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§1 Solutions to Day 1
§1.1 IMO 2002/1
Available online at https://aops.com/community/p118710.

Problem statement

Let n be a positive integer. Let T be the set of points (x, y) in the plane where x
and y are non-negative integers with x+ y < n. Each point of T is coloured red or
blue, subject to the following condition: if a point (x, y) is red, then so are all points
(x′, y′) of T with x′ ≤ x and y′ ≤ y. Let A be the number of ways to choose n blue
points with distinct x-coordinates, and let B be the number of ways to choose n
blue points with distinct y-coordinates. Prove that A = B.

Let ax denote the number of blue points with a given x-coordinate. Define by to be the
number of blue points with a given y-coordinate.

We actually claim that

Claim — The multisets A := {ax | x} and B := {by | y} are equal.

Proof. By induction on the number of red points. If there are no red points at all, then
A = B = {1, . . . , n}.

The proof consists of two main steps. First, suppose we color a single point P = (x, y)
from blue to red (while preserving the condition). Before the coloring, we have ax =
by = n− (x+ y); afterwards ax = by = n− (x+ y)− 1 and no other numbers change, as
desired.

We also must show that this operation (repeatedly adding a single point P ) reaches
all possible shapes of red points. This is well-known as the red points form a Young
tableaux; for example, one way is to add all the points with x = 0 first one by one, then
all the points with x = 1, and so on. So the induction implies the result.

Finally,

A =
n−1∏
x=0

ax =
n−1∏
y=0

by = B.
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§1.2 IMO 2002/2
Available online at https://aops.com/community/p118672.

Problem statement

Let BC be a diameter of circle ω with center O. Let A be a point of circle ω such
that 0◦ < ∠AOB < 120◦. Let D be the midpoint of arc AB not containing C. Line
` passes through O and is parallel to line AD. Line ` intersects line AC at J . The
perpendicular bisector of segment OA intersects circle ω at E and F . Prove that J
is the incenter of triangle CEF .

By construction, AEOF is a rhombus with 60◦-120◦ angles. Consequently, we may set
s = AO = AE = AF = EO = EF .

BC

D

A

E

F

O

J

Claim — We have AJ = s too.

Proof. It suffices to show AJ = AO which is angle chasing. Let θ = ∠BOD = ∠DOA,
so ∠BOA = 2θ. Thus ∠CAO = 1

2∠BOA = θ. However ∠AOJ = ∠OAD = 90◦ − 1
2θ, as

desired.

Then, since AE = AJ = AF , we are done by the infamous Fact 5.
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§1.3 IMO 2002/3, proposed by Laurentiu Panaitopol (ROM)
Available online at https://aops.com/community/p118695.

Problem statement

Find all pairs of positive integers m,n ≥ 3 for which there exist infinitely many
positive integers a such that

am + a− 1

an + a2 − 1

is itself an integer.

The condition is equivalent to an + a2 − 1 dividing am + a− 1 as polynomials. The big
step is the following analytic one.

Claim — We must have m ≤ 2n.

Proof. Assume on contrary m > 2n and let 0 < r < 1 be the unique real number with
rn + r2 = 1, hence rm + r = 1. But now

0 = rm + r − 1 < r(rn)2 + r − 1 = r
(
(1− r2)2 + 1

)
− 1

= −(1− r)
(
r4 + r3 − r2 − r + 1

)
.

As 1− r > 0 and r4 + r3 − r2 − r + 1 > 0, this is a contradiction

Now for the algebraic part. Obviously m > n.

an + a2 − 1 | am + a− 1

⇐⇒ an + a2 − 1 | (am + a− 1)(a+ 1) = am(a+ 1) + (a2 − 1)

⇐⇒ an + a2 − 1 | am(a+ 1)− an

⇐⇒ an + a2 − 1 | am−n(a+ 1)− 1.

The right-hand side has degree m− n+ 1 ≤ n+ 1, and the leading coefficients are both
+1. So the only possible situations are

am−n(a+ 1)− 1 = (a+ 1)
(
an + a2 − 1

)
am−n(a+ 1) + 1 = an + a2 − 1.

The former fails by just taking a = −1; the latter implies (m,n) = (5, 3). As our work
was reversible, this also implies (m,n) = (5, 3) works, done.

5

http://web.evanchen.cc
https://aops.com/community/p118695


IMO 2002 Solution Notes web.evanchen.cc, updated 11 December 2023

§2 Solutions to Day 2
§2.1 IMO 2002/4
Available online at https://aops.com/community/p118687.

Problem statement

Let n ≥ 2 be a positive integer with divisors 1 = d1 < d2 < · · · < dk = n. Prove
that d1d2 + d2d3 + · · ·+ dk−1dk is always less than n2, and determine when it is a
divisor of n2.

We always have

dkdk−1 + dk−1dk−2 + · · ·+ d2d1 < n · n
2
+

n

2
· n
3
+ . . .

=

(
1

1 · 2
+

1

2 · 3
+ . . .

)
n2 = n2.

This proves the first part.
For the second, we claim that this only happens when n is prime (in which case we get

d1d2 = n). Assume n is not prime (equivalently k ≥ 2) and let p be the smallest prime
dividing n. Then

dkdk−1 + dk−1dk−2 + · · ·+ d2d1 > dkdk−1 =
n2

p

exceeds the largest proper divisor of n2, but is less than n2, so does not divide n2.
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§2.2 IMO 2002/5
Available online at https://aops.com/community/p118703.

Problem statement

Find all functions f : R → R such that

(f(x) + f(z)) (f(y) + f(t)) = f(xy − zt) + f(xt+ yz)

for all real numbers x, y, z, t.

The answer is f(x) ≡ 0, f(x) ≡ 1/2 and f(x) ≡ x2 which are easily seen to work. Let’s
prove they are the only ones; we show two solutions.

¶ First solution (multiplicativity). Let P (x, y, z, t) denote the given statement.

• By comparing P (x, 1, 0, 0) and P (0, 0, 1, x) we get f even .

• By P (0, y, 0, t) we get for nonconstant f that f(0) = 0. If f is constant we get the
solutions earlier, so in the sequel assume f(0) = 0 .

• By P (x, y, 0, 0) we get f(xy) = f(x)f(y) . Note in particular that for any real
number x we now have

f(x) = f(|x|) = f
(√

|x|
)2

≥ 0

that is, f ≥ 0.

From P (x, y, y, x) we now have

f(x2 + y2) = (f(x) + f(y))2 = f(x2) + 2f(x)f(y) + f(y2) ≥ f(x2)

so f is weakly increasing. Combined with f multiplicative and nonconstant, this implies
f(x) = |x|r for some real number r.

Finally, P (1, 1, 1, 1) gives f(2) = 4f(1), so f(x) ≡ x2.

¶ Second solution (ELMO). Let P (x, y, z, t) denote the statement. Assume f is
nonconstant, as before we derive that f is even, f(0) = 0, and f(x) ≥ 0 for all x.

Now comparing P (x, y, z, t) and P (z, y, x, t) we obtain

f(xy − zt) + f(xt+ yz) = (f(x) + f(z)) (f(y) + f(t)) = f(xy + zt) + f(xt− yz)

which in particular implies that

f(a− d) + f(b+ c) = f(a+ d) + f(b− c) if ad = bc and a, b, c, d > 0.

Thus the restriction of f to (0,∞) satisfies ELMO 2011, problem 4 which implies
that f(x) = kx2 + ` for constants k and `. From here we recover the original.

(Minor note: technically ELMO 2011/4 is f : (0,∞) → (0,∞) but we only have f ≥ 0,
however the proof for the ELMO problem works as long as f is bounded below; we could
also just apply the ELMO problem to f + 0.01 instead.)
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§2.3 IMO 2002/6
Available online at https://aops.com/community/p118677.

Problem statement

Let n ≥ 3 be a positive integer. Let C1, C2, . . . , Cn be unit circles in the plane, with
centers O1, O2, . . . , On respectively. If no line meets more than two of the circles,
prove that ∑

1≤i<j≤n

1

OiOj
≤ (n− 1)π

4
.

For brevity, let dij be the length of Oij and let ∠(ijk) be shorthand for ∠OiOjOk (or its
measure in radians).

First, we eliminate the circles completely and reduce the problem to angles using the
following fact (which is in part motivated by the mysterious presence of π on right-hand
side, and also brings d−1

ij into the picture).

Lemma
For any indices i, j, m we have the inequalities

∠(imj) ≥ max
(

2

dmi
,

2

dmj

)
and π − ∠(imj) ≥ max

(
2

dmi
,

2

dmj

)
.

Proof. We first prove the former line. Consider the altitude from Oi to OmOj . The
altitude must have length at least 2, otherwise its perpendicular bisector passes intersects
all of Ci , Cm, Cj . Thus

2 ≤ dmi sin∠(imj) ≤ ∠(imj)

proving the first line. The second line follows by considering the external angle formed
by lines OmOi and OmOj instead of the internal one.

Our idea now is for any index m we will make an estimate on
∑

1≤i≤n
i 6=b

1
dbi

for each

index b. If the centers formed a convex polygon, this would be much simpler, but because
we do not have this assumption some more care is needed.

Claim — Suppose Oa, Ob, Oc are consecutive vertices of the convex hull. Then

n− 1

n− 2
](abc) ≥ 2

d1b
+

2

d2b
+ · · ·+ 2

dnb

where the term 2
dbb

does not appear (obviously).

Proof. WLOG let’s suppose (a, b, c) = (2, 1, n) and that rotating ray O2O1 hits O3, O4,
. . . , On in that order. We have

2

d12
≤ ∠(213)

2

d13
≤ min {∠(213),∠(314)}
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2

d14
≤ min {∠(314),∠(415)}

...
2

d1(n−1)
≤ min {∠((n− 2)1(n− 1)),∠((n− 1)1n)}

2

d1n
≤ ∠ ((n− 1)1n) .

Of the n−1 distinct angles appearing on the right-hand side, we let κ denote the smallest
of them. We have κ ≤ 1

n−2∠(21n) by pigeonhole principle. Then we pick the minimums
on the right-hand side in the unique way such that summing gives

n∑
i=2

2

d1i
≥ (∠(213) + ∠(314) + · · ·+ ∠((n− 1)1n)) + κ

≥ ∠(21n) +
1

n− 2
∠(21n) =

n− 1

n− 2
∠(21n)

as desired.

Next we show a bound that works for any center, even if it does not lie on the convex
hull H.

Claim — For any index b we have

n− 1

n− 2
π ≥ 2

d1b
+

2

d2b
+ · · ·+ 2

dnb

where the term 2
dbb

does not appear (obviously).

Proof. This is the same argument as in the previous proof, with the modification that
because Ob could lie inside the convex hull now, our rotation argument should use lines
instead of rays (in order for the angle to be π rather than 2π). This is why the first
lemma is stated with two cases; we need it now.

Again WLOG b = 1. Consider line O1O2 (rather than just the ray) and imagine rotating
it counterclockwise through O2; suppose that this line passes through O3, O4, . . . , On in
that order before returning to O2 again. We let ](i1j) ∈ {∠(i1j), π − ∠(i1j)} ∈ [0, π)
be the counterclockwise rotations obtained in this way, so that

](21n) = ](213) + ](314) + + · · ·+ ]((n− 1)1n).

(This is not “directed angles”, but related.)
Then we get bounds

2

d12
≤ ](213)

2

d13
≤ min {](213),](314)}

...
2

d1(n−1)
≤ min {]((n− 2)1(n− 1)),]((n− 1)1n)}

2

d1n
≤ ] {(n− 1)1n}
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as in the last proof, and so as before we get

n∑
i=1

2

d1i
≤ n− 1

n− 2
](21n)

which is certainly less than n−1
n−2π.

Now suppose there were r vertices in the convex hull. If we sum the first claim across
all b on the hull, and the second across all b not on the hull (inside it), we get∑

1≤i<j≤n

2

dij
=

1

2

∑
b

∑
i 6=b

2

dbi

≤ 1

2
· n− 1

n− 2
((r − 2)π + (n− r)π)

=
(n− 1)π

4

as needed (with (r − 2)π being the sum of angles in the hull).
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