
IMO 2001 Solution Notes
Evan Chen《陳誼廷》

24 December 2023

This is a compilation of solutions for the 2001 IMO. Some of the solutions
are my own work, but many are from the official solutions provided by the
organizers (for which they hold any copyrights), and others were found by
users on the Art of Problem Solving forums.

These notes will tend to be a bit more advanced and terse than the “official”
solutions from the organizers. In particular, if a theorem or technique is not
known to beginners but is still considered “standard”, then I often prefer to
use this theory anyways, rather than try to work around or conceal it. For
example, in geometry problems I typically use directed angles without further
comment, rather than awkwardly work around configuration issues. Similarly,
sentences like “let R denote the set of real numbers” are typically omitted
entirely.

Corrections and comments are welcome!
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§0 Problems
1. Let ABC be an acute-angled triangle with O as its circumcenter. Let P on line

BC be the foot of the altitude from A. Assume that ∠BCA ≥ ∠ABC+30◦. Prove
that ∠CAB + ∠COP < 90◦.

2. Let a, b, c be positive reals. Prove that

a√
a2 + 8bc

+
b√

b2 + 8ca
+

c√
c2 + 8ab

≥ 1.

3. Twenty-one girls and twenty-one boys took part in a mathematical competition. It
turned out that each contestant solved at most six problems, and for each pair of a
girl and a boy, there was at least one problem that was solved by both the girl and
the boy. Show that there is a problem that was solved by at least three girls and
at least three boys.

4. Let n be an odd integer greater than 1 and let c1, c2, . . . , cn be integers. For each
permutation a = (a1, a2, . . . , an) of {1, 2, . . . , n}, define S(a) =

∑n
i=1 ciai. Prove

that there exist two permutations a 6= b of {1, 2, . . . , n} such that n! is a divisor of
S(a)− S(b).

5. Let ABC be a triangle. Let AP bisect ∠BAC and let BQ bisect ∠ABC, with P
on BC and Q on AC. If AB +BP = AQ+QB and ∠BAC = 60◦, what are the
angles of the triangle?

6. Let a > b > c > d > 0 be integers satisfying

ac+ bd = (b+ d+ a− c)(b+ d− a+ c).

Prove that ab+ cd is not prime.
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§1 Solutions to Day 1
§1.1 IMO 2001/1
Available online at https://aops.com/community/p119192.

Problem statement

Let ABC be an acute-angled triangle with O as its circumcenter. Let P on line BC
be the foot of the altitude from A. Assume that ∠BCA ≥ ∠ABC +30◦. Prove that
∠CAB + ∠COP < 90◦.

The conclusion rewrites as

∠COP < 90◦ − ∠A = ∠OCP

⇐⇒ PC < PO

⇐⇒ PC2 < PO2

⇐⇒ PC2 < R2 − PB · PC

⇐⇒ PC ·BC < R2

⇐⇒ ab cosC < R2

⇐⇒ sinA sinB cosC <
1

4
.

Now
cosC sinB =

1

2
(sin(C +B)− sin(C −B)) ≤ 1

2

(
1− 1

2

)
=

1

4

which finishes when combined with sinA < 1.

Remark. If we allow ABC to be right then equality holds when ∠A = 90◦, ∠C = 60◦,
∠B = 30◦. This motivates the choice of estimates after reducing to a trig inequality.
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§1.2 IMO 2001/2
Available online at https://aops.com/community/p119168.

Problem statement

Let a, b, c be positive reals. Prove that

a√
a2 + 8bc

+
b√

b2 + 8ca
+

c√
c2 + 8ab

≥ 1.

By Holder, we have(∑
cyc

a√
a2 + 8bc

)2(∑
cyc

a(a2 + 8bc)

)
≥ (a+ b+ c)3.

So it suffices to show (a+ b+ c)3 ≥ a3 + b3 + c3 + 24abc which is clear by expanding.
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§1.3 IMO 2001/3
Available online at https://aops.com/community/p119191.

Problem statement

Twenty-one girls and twenty-one boys took part in a mathematical competition. It
turned out that each contestant solved at most six problems, and for each pair of a
girl and a boy, there was at least one problem that was solved by both the girl and
the boy. Show that there is a problem that was solved by at least three girls and at
least three boys.

We will show the contrapositive. That is, assume that

• For each pair of a girl and a boy, there was at least one problem that was solved by
both the girl and the boy.

• Assume every problem is either solved mostly by girls (at most two boys) or mostly
by boys (at most two girls).

Then we will prove that then some contestant solved more than six problems.
Create a 21× 21 grid with boys as columns and girls as rows, and in each cell write the

name of a problem solved by the pair. Color the cell green if at most two girls solved
that problem, and color it blue if at most two boys solved that problem. (G for girl, B
for boy. It’s possible both colors are used for some cell.)

WLOG, there are more green cells than blue, so (by pigeonhole) take a column (boy)
with that property. That means the boy’s column has at least 11 green squares. By
hypothesis, those corresponds to at least 6 different problems solved. Now there are two
cases:

• If there are any blue-only squares, then that square means a seventh distinct
problems.

• If the entire column is green, then among the 21 green squares there are at least 11
distinct problems solved in that column.

Remark. The number 21 cannot be decreased. Here is an example of 20 boys and 20 girls
who solve problems named A-J and 0-9, which motivates the solution to begin with.

0000000000AABBCCDDEE
0000000000AABBCCDDEE
1111111111AABBCCDDEE
1111111111AABBCCDDEE
2222222222AABBCCDDEE
2222222222AABBCCDDEE
3333333333AABBCCDDEE
3333333333AABBCCDDEE
4444444444AABBCCDDEE
4444444444AABBCCDDEE

FFGGHHIIJJ5555555555
FFGGHHIIJJ5555555555
FFGGHHIIJJ6666666666
FFGGHHIIJJ6666666666
FFGGHHIIJJ7777777777
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FFGGHHIIJJ7777777777
FFGGHHIIJJ8888888888
FFGGHHIIJJ8888888888
FFGGHHIIJJ9999999999
FFGGHHIIJJ9999999999

Remark. This took me embarrassingly long, but part of the work of the problem seemed
to be finding the right “data structure” to get a foothold. I think the grid is good because
we want to fill each intersection, then we consider for each cell a problem to put.

I initially wanted to capture the full data by writing in each green cell the row index
of the other girl who solved it, and similarly for the blue cells. (That led naturally to the
colors, there were two types of cells.) This was actually helpful for finding the equality case
above, but once I realized the equality case I also realized that I could discard the extra
information and only remember the colors.
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§2 Solutions to Day 2
§2.1 IMO 2001/4
Available online at https://aops.com/community/p119174.

Problem statement

Let n be an odd integer greater than 1 and let c1, c2, . . . , cn be integers. For each
permutation a = (a1, a2, . . . , an) of {1, 2, . . . , n}, define S(a) =

∑n
i=1 ciai. Prove

that there exist two permutations a 6= b of {1, 2, . . . , n} such that n! is a divisor of
S(a)− S(b).

Assume for contradiction that all the S(a) are distinct modulo n!. Then summing across
all permutations gives

1 + 2 + · · ·+ n! ≡
∑
a

S(a)

=
∑
a

n∑
i=1

ciai

=

n∑
i=1

ci
∑
a

ai

=

n∑
i=1

ci · ((n− 1)! · (1 + · · ·+ n))

= (n− 1)! · n(n+ 1)

2

n∑
i=1

ci

= n! · n+ 1

2

n∑
i=1

ci

≡ 0

since 1
2(n+1) is an integer. But on the other hand 1+2+ · · ·+n! = n!(n!+1)

2 which is not
divisible by n! if n > 1, as the quotient is the non-integer n!+1

2 . This is a contradiction.
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§2.2 IMO 2001/5
Available online at https://aops.com/community/p119207.

Problem statement

Let ABC be a triangle. Let AP bisect ∠BAC and let BQ bisect ∠ABC, with P
on BC and Q on AC. If AB + BP = AQ + QB and ∠BAC = 60◦, what are the
angles of the triangle?

The answer is ∠B = 80◦ and ∠C = 40◦. Set x = ∠ABQ = ∠QBC, so that ∠QCB =
120◦ − 2x. We observe ∠AQB = 120◦ − x and ∠APB = 150◦ − 2x.

A

B CP

Q

30◦
30◦

120 ◦− 2xx
x

Now by the law of sines, we may compute

BP = AB · sin 30◦

sin(150◦ − 2x)

AQ = AB · sinx

sin(120◦ − x)

QB = AB · sin 60◦

sin(120◦ − x)
.

So, the relation AB +BP = AQ+QB is exactly

1 +
sin 30◦

sin(150◦ − 2x)
=

sinx+ sin 60◦

sin(120◦ − x)
.

This is now a trig problem, and we simply solve for x. There are many possible approaches
and we just present one.

First of all, we can write

sinx+ sin 60◦ = 2 sin
(
1

2
(x+ 60◦)

)
cos
(
1

2
(x− 60◦)

)
.

On the other hand, sin(120◦ − x) = sin(x+ 60◦) and

sin(x+ 60◦) = 2 sin
(
1

2
(x+ 60◦)

)
cos
(
1

2
(x+ 60◦)

)
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so
sinx+ sin 60◦

sin(120◦ − x)
=

cos
(
1
2x− 30◦

)
cos
(
1
2x+ 30◦

) .
Let y = 1

2x for brevity now. Then

cos(y − 30◦)

cos(y + 30◦)
− 1 =

cos(y − 30◦)− cos(y + 30◦)

cos(y + 30◦)

=
2 sin(30◦) sin y

cos(y + 30◦)

=
sin y

cos(y + 30◦)
.

Hence the problem is just

sin 30◦

sin(150◦ − 4y)
=

sin y

cos(y + 30◦)
.

Equivalently,

cos(y + 30◦) = 2 sin y sin(150◦ − 4y)

= cos(5y − 150◦)− cos(150◦ − 3y)

= − cos(5y + 30◦) + cos(3y + 30◦).

Now we are home free, because 3y + 30◦ is the average of y + 30◦ and 5y + 30◦. That
means we can write

cos(y + 30◦) + cos(5y + 30◦)

2
= cos(3y + 30◦) cos(2y).

Hence
cos(3y + 30◦) (2 cos(2y)− 1) = 0.

Recall that
y =

1

2
x =

1

4
∠B <

1

4
(180◦ − ∠A) = 30◦.

Hence it is not possible that cos(2y) = 1
2 , since the smallest positive value of y that

satisfies this is y = 30◦. So cos(3y + 30◦) = 0.
The only permissible value of y is then y = 20◦, giving ∠B = 80◦ and ∠C = 40◦.
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§2.3 IMO 2001/6
Available online at https://aops.com/community/p119217.

Problem statement

Let a > b > c > d > 0 be integers satisfying

ac+ bd = (b+ d+ a− c)(b+ d− a+ c).

Prove that ab+ cd is not prime.

The problem condition is equivalent to

ac+ bd = (b+ d)2 − (a− c)2

or
a2 − ac+ c2 = b2 + bd+ d2.

Let us construct a quadrilateral WXY Z such that WX = a, XY = c, Y Z = b,
ZW = d, and

WY =
√

a2 − ac+ c2 =
√

b2 + bd+ d2.

Then by the law of cosines, we obtain ∠WXY = 60◦ and ∠WZY = 120◦. Hence this
quadrilateral is cyclic.

X

W Y

Z

a

b

c

d

√
a2 − ac+ c2

=
√
b2 + bd+ d2

By the more precise version of Ptolemy’s theorem, we find that

WY 2 =
(ab+ cd)(ad+ bc)

ac+ bd
.

Now assume for contradiction that that ab+ cd is a prime p. Recall that we assumed
a > b > c > d. It follows, for example by rearrangement inequality, that

p = ab+ cd > ac+ bd > ad+ bc.
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Let y = ac+ bd and x = ad+ bc now. The point is that

p · x
y

can never be an integer if p is prime and x < y < p. But WY 2 = a2 − ac+ c2 is clearly
an integer, and this is a contradiction.

Hence ab+ cd cannot be prime.

Remark. It may be tempting to try to apply the more typical form of Ptolemy to get
ab + cd = WY · XZ; the issue with this approach is that WY and XZ are usually not
integers.
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