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11 December 2023

This is a compilation of solutions for the 2000 IMO. Some of the solutions
are my own work, but many are from the official solutions provided by the
organizers (for which they hold any copyrights), and others were found by
users on the Art of Problem Solving forums.

These notes will tend to be a bit more advanced and terse than the “official”
solutions from the organizers. In particular, if a theorem or technique is not
known to beginners but is still considered “standard”, then I often prefer to
use this theory anyways, rather than try to work around or conceal it. For
example, in geometry problems I typically use directed angles without further
comment, rather than awkwardly work around configuration issues. Similarly,
sentences like “let R denote the set of real numbers” are typically omitted
entirely.

Corrections and comments are welcome!
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§0 Problems
1. Two circles G1 and G2 intersect at two points M and N . Let AB be the line

tangent to these circles at A and B, respectively, so that M lies closer to AB than
N . Let CD be the line parallel to AB and passing through the point M , with C
on G1 and D on G2. Lines AC and BD meet at E; lines AN and CD meet at P ;
lines BN and CD meet at Q. Show that EP = EQ.

2. Let a, b, c be positive real numbers with abc = 1. Show that(
a− 1 +

1

b

)(
b− 1 +

1

c

)(
c− 1 +

1

a

)
≤ 1.

3. Let n ≥ 2 be a positive integer and λ a positive real number. Initially there are n
fleas on a horizontal line, not all at the same point. We define a move as choosing
two fleas at some points A and B, with A to the left of B, and letting the flea from
A jump over the flea from B to the point C so that BC

AB = λ.
Determine all values of λ such that, for any point M on the line and for any initial
position of the n fleas, there exists a sequence of moves that will take them all to
the position right of M .

4. A magician has one hundred cards numbered 1 to 100. He puts them into three
boxes, a red one, a white one and a blue one, so that each box contains at least
one card. A member of the audience draws two cards from two different boxes
and announces the sum of numbers on those cards. Given this information, the
magician locates the box from which no card has been drawn.
How many ways are there to put the cards in the three boxes so that the trick
works?

5. Does there exist a positive integer n such that n has exactly 2000 distinct prime
divisors and n divides 2n + 1?

6. Let AH1, BH2, and CH3 be the altitudes of an acute triangle ABC. The incircle ω
of triangle ABC touches the sides BC, CA and AB at T1, T2 and T3, respectively.
Consider the reflections of the lines H1H2, H2H3, and H3H1 with respect to the
lines T1T2, T2T3, and T3T1. Prove that these images form a triangle whose vertices
lie on ω.
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§1 Solutions to Day 1
§1.1 IMO 2000/1
Available online at https://aops.com/community/p354110.

Problem statement

Two circles G1 and G2 intersect at two points M and N . Let AB be the line tangent
to these circles at A and B, respectively, so that M lies closer to AB than N . Let
CD be the line parallel to AB and passing through the point M , with C on G1 and
D on G2. Lines AC and BD meet at E; lines AN and CD meet at P ; lines BN
and CD meet at Q. Show that EP = EQ.

First, we have ]EAB = ]ACM = ]BAM and similarly ]EBA = ]BDM = ]ABM .
Consequently, AB bisects ∠EAM and ∠EBM , and hence 4EAB ∼= 4MAB.

M

N

A

B

C

D

E

P

Q
T

Now it is well-known that MN bisects AB and since AB ‖ PQ we deduce that M
is the midpoint of PQ. As AB is the perpendicular bisector of EM , it follows that
EP = EQ as well.
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§1.2 IMO 2000/2
Available online at https://aops.com/community/p354109.

Problem statement

Let a, b, c be positive real numbers with abc = 1. Show that(
a− 1 +

1

b

)(
b− 1 +

1

c

)(
c− 1 +

1

a

)
≤ 1.

Let a = x/y, b = y/z, c = z/x for x, y, z > 0. Then the inequality rewrites as

(−x+ y + z)(x− y + z)(x+ y − z) ≤ xyz

which when expanded is equivalent to Schur’s inequality. Alternatively, if one wants to
avoid appealing to Schur, then the following argument works:

• At most one term on the left-hand side is negative; if that occurs we are done from
xyz > 0 > (−x+ y + z)(x− y + z)(x+ y − z).

• If all terms in the left-hand side are nonnegative, let us denote m = −x+ y+ z ≥ 0,
n = x− y + z ≥ 0, p = x+ y − z ≥ 0. Then it becomes

mnp ≤ (m+ n)(n+ p)(p+m)

8

which follows by AM-GM.
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§1.3 IMO 2000/3
Available online at https://aops.com/community/p354112.

Problem statement

Let n ≥ 2 be a positive integer and λ a positive real number. Initially there are n
fleas on a horizontal line, not all at the same point. We define a move as choosing
two fleas at some points A and B, with A to the left of B, and letting the flea from
A jump over the flea from B to the point C so that BC

AB = λ.
Determine all values of λ such that, for any point M on the line and for any initial

position of the n fleas, there exists a sequence of moves that will take them all to
the position right of M .

The answer is λ ≥ 1
n−1 .

We change the problem by replacing the fleas with bowling balls B1, B2, . . . , Bn

in that order. Bowling balls aren’t exactly great at jumping, so each move can now be
described as follows:

• Select two indices i < j. Then ball Bi moves to Bi+1’s location, Bi+1 moves to
Bi+2’s location, and so on; until Bj−1 moves to Bj ’s location,

• Finally, Bj moves some distance forward; the distance is at most λ · |BjBi| and Bj

may not pass Bj+1.

Claim — If λ < 1
n−1 the bowling balls have bounded movement.

Proof. Let ai ≥ 0 denote the initial distance between Bi and Bi+1, and let ∆i denote
the distance travelled by ball i. Of course we have ∆1 ≤ a1 +∆2, ∆2 ≤ a2 +∆3, . . . ,
∆n−1 ≤ an−1+∆n by the relative ordering of the bowling balls. Finally, distance covered
by Bn is always λ times distance travelled by other bowling balls, so

∆n ≤ λ

n−1∑
i=1

∆i ≤ λ

n−1∑
i=1

((ai + ai+1 + · · ·+ an−1) + ∆n)

= (n− 1)λ ·∆n +

n−1∑
i=1

iai

and since (n− 1)λ > 1, this gives an upper bound.

Remark. Equivalently, you can phrase the proof without bowling balls as follows: if
x1 < · · · < xn are the positions of the fleas, the quantity

L = xn − λ(x1 + · · ·+ xn−1)

is a monovariant which never increases; i.e. L is bounded above. Since L > (1− (n− 1)λ)xn,
it follows λ < 1

n−1 is enough to stop the fleas.
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Claim — When λ ≥ 1
n−1 , it suffices to always jump the leftmost flea over the

rightmost flea.

Proof. If we let xi denote the distance travelled by B1 in the ith step, then xi = ai for
1 ≤ i ≤ n− 1 and xi = λ(xi−1 + xi−2 + · · ·+ xi−(n−1)).

In particular, if λ ≥ 1
n−1 then each xi is at least the average of the previous n − 1

terms. So if the ai are not all zero, then {xn, . . . , x2n−2} are all positive and thereafter
xi ≥ min {xn, . . . , x2n−2} > 0 for every i ≥ 2n − 1. So the partial sums of xi are
unbounded, as desired.

Remark. Other inductive constructions are possible. Here is the idea of one of them,
although the details are more complicated.

We claim in general that given n− 1 fleas at 0 and one flea at 1, we can get all the fleas
arbitrarily close to 1

1−(n−1)λ (or as far as we want if λ > 1
n−1 .). The proof is induction by

n ≥ 2; for n = 2 we get a geometric series. For n ≥ 3, we leave one flea at zero and move
the remainder close to 1

1−(n−2)λ , then jump the last flea to 1+λ
1−(n−2)λ .

Now we’re in the same situation, except we shifted 1
1−(n−2)λ right and have then scaled

everything by r = λ
1−(n−2)λ . If we repeat this process again and check the geometric series,

we see the fleas converge to

1

1− (n− 2)λ

(
1 + r + r2 + r3 + . . .

)
=

1

1− (n− 2)λ
· 1

1− r
=

1

1− (n− 1)λ
.
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§2 Solutions to Day 2
§2.1 IMO 2000/4
Available online at https://aops.com/community/p354114.

Problem statement

A magician has one hundred cards numbered 1 to 100. He puts them into three
boxes, a red one, a white one and a blue one, so that each box contains at least
one card. A member of the audience draws two cards from two different boxes and
announces the sum of numbers on those cards. Given this information, the magician
locates the box from which no card has been drawn.

How many ways are there to put the cards in the three boxes so that the trick
works?

There are 2 · 3! = 12 ways, which amount to:

• Partitioning the cards modulo 3, or

• Placing 1 alone in a box, 100 alone in a second box, and all remaining cards in the
third box.

These are easily checked to work so we prove they are the only ones.

¶ First solution. We proceed by induction on n ≥ 3 with the base case being immediate.
For the inductive step, consider a working partition of {1, 2, . . . , n}. Then either n

is in its own box; or deleting n gives a working partition of {1, 2, . . . , n− 1}. Similarly,
either 1 is in its own box; or deleting 1 gives a working partition of {2, 3, . . . , n}, and we
can reduce all numbers by 1 to get a working partition of {1, 2, . . . , n− 1}.

Therefore, we only need to consider there cases.

• If 1 and n are both in their own box, this yields one type of solution we already
found.

• If n is not in a box by itself, then by induction hypothesis the cards 1 through
n− 1 are either arranged mod 3, or as {1} ∪ {2, 3, . . . , n− 2} ∪ {n− 1}.

– In the former mod 3 situation, since n+(n− 3) = (n− 1)+ (n− 2), so n must
be in the same box as n− 3.

– In the latter case and for n > 4, since n+ 1 = 2 + (n− 1), n must be in the
same box as 1. But now n+ 2 = (n− 1) + 3 for n > 4, contradiction.

• The case where 1 is in a box by itself is analogous.

This exhausts all cases, completing the proof.

¶ Second solution. Let A, B, C be the sets of cards in the three boxes. Then A+B,
B + C, C +A should be disjoint, and contained in {3, 4, . . . , 199}. On the other hand,
we have the following famous fact.
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Lemma
Let X and Y be finite nonempty sets of real numbers. We have |X+Y | ≥ |X|+|Y |−1,
with equality if and only if X and Y are arithmetic progressions with the same
common difference, or one of X and Y is a singleton set.

Putting these two together gives the estimates

197 ≥ |A+B|+ |B + C|+ |C +A| ≥ 2 (|A|+ |B|+ |C|)− 3 = 197.

So all the inequalities must be sharp. Consequently we conclude that:

Claim — Either the sets A, B, C are disjoint arithmetic progressions with the same
common difference d = minx 6=y in same set |x− y|, or two of the sets are two singleton.
Moreover, {3, 4, . . . , 199} = (A+B) t (B + C) t (C +A).

From here it is not hard to deduce the layouts above are the only ones, but there are
some details. First, we make the preliminary observation that 3 = 1 + 2, 4 = 1 + 3,
198 = 98 + 100, 199 = 99 + 100 and these numbers can’t be decomposed in other ways;
thus from the remark about the disjoint union:

Claim (Convenient corollary) — The pairs (1, 2), (1, 3), (98, 100), (99, 100) are all
in different sets.

We now consider the four cases.

• If two of the boxes are singletons, it follows from the corollary that we should have
A = {1}, B = {100} and C = {2, . . . , 99}, up to permutation.

• Otherwise A, B, C are disjoint arithmetic progressions with the same common
difference d. As two of {1, 2, 3, 4} are in the same box (by pigeonhole), we must
have d ≤ 3.

– If d = 3, then no two elements of different residues modulo 3 can be in the
same box, so we must be in the first construction claimed earlier.

– If d = 2, then the convenient corollary tells us we may assume WLOG that
1 ∈ A and 2 ∈ B, hence 3 ∈ C (since 3 /∈ A by convenient corollary, and
3 /∈ B because common difference 2). Thus we must have A = {1}, B =
{2, 4, . . . , 100} and C = {3, 5, . . . 99} which does not work since 1 + 4 = 2 + 3.
Therefore there are no solutions in this case.

– If d = 1, then by convenient corollary the numbers 1 and 2 are in different sets,
as are 99 and 100. So we must have A = {1}, B = {2, . . . , 99}, C = {100}
which we have already seen is valid.
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§2.2 IMO 2000/5
Available online at https://aops.com/community/p354115.

Problem statement

Does there exist a positive integer n such that n has exactly 2000 distinct prime
divisors and n divides 2n + 1?

Answer: Yes.
We say that n is Korean if n | 2n + 1. First, observe that n = 9 is Korean. Now, the

problem is solved upon the following claim:

Claim — If n > 3 is Korean, there exists a prime p not dividing n such that np is
Korean too.

Proof. I claim that one can take any primitive prime divisor p of 22n − 1, which exists
by Zsigmondy theorem. Obviously p 6= 2. Then:

• Since p - 2ϕ(n) − 1 it follows then that p - n.

• Moreover, p | 2n + 1 since p - 2n − 1.

Hence np | 2n + 1 | 2np + 1 by Chinese Theorem, since gcd(n, p) = 1.
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§2.3 IMO 2000/6
Available online at https://aops.com/community/p351094.

Problem statement

Let AH1, BH2, and CH3 be the altitudes of an acute triangle ABC. The incircle ω
of triangle ABC touches the sides BC, CA and AB at T1, T2 and T3, respectively.
Consider the reflections of the lines H1H2, H2H3, and H3H1 with respect to the
lines T1T2, T2T3, and T3T1. Prove that these images form a triangle whose vertices
lie on ω.

We use complex numbers with ω the unit circle. Let T1 = a, T2 = b, T3 = c. The main
content of the problem is to show that the triangle in question has vertices ab/c, bc/a,
ca/b (which is evident from a good diagram).

Since A = 2bc
b+c , we have

H1 =
1

2

(
2bc

b+ c
+ a+ a− a2 · 2

b+ c

)
=

ab+ bc+ ca− a2

b+ c
.

The reflection of H1 over T1T2 is

HC
1 = a+ b− abH1 = a+ b− b · ac+ ab+ a2 − bc

a(b+ c)

=
a(a+ b)(b+ c)− b(a2 + ab+ ac− bc)

a(b+ c)
=

c(a2 + b2)

a(b+ c)
.

Now, we claim that HC
1 lies on the chord joining ca

b and cb
a ; by symmetry so will HC

2 and
this will imply the problem (it means that the desired triangle has vertices ab/c, bc/a,
ca/b). A cartoon of this is shown below.

bc
a

ca
b

ab
c

HC
1

HC
2

HA
2 HA

3

HB
3

HB
1

To see this, it suffices to compute

HC
1 +

(ca
b

)(
cb

a

)
HC

1 =
c(a2 + b2)

a(b+ c)
+ c2

1
c ·

a2+b2

a2b2

1
a

(
b+c
bc

)
=

c(a2 + b2)

a(b+ c)
+

c(a2 + b2)

abc−1(b+ c)
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=
c(a2 + b2)

a(b+ c)

(
b+ c

b

)
=

c(a2 + b2)

ab
=

ca

b
+

cb

a

as desired.
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