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Evan Chen《陳誼廷》

11 December 2023

This is a compilation of solutions for the 1999 IMO. Some of the solutions
are my own work, but many are from the official solutions provided by the
organizers (for which they hold any copyrights), and others were found by
users on the Art of Problem Solving forums.

These notes will tend to be a bit more advanced and terse than the “official”
solutions from the organizers. In particular, if a theorem or technique is not
known to beginners but is still considered “standard”, then I often prefer to
use this theory anyways, rather than try to work around or conceal it. For
example, in geometry problems I typically use directed angles without further
comment, rather than awkwardly work around configuration issues. Similarly,
sentences like “let R denote the set of real numbers” are typically omitted
entirely.

Corrections and comments are welcome!
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§0 Problems
1. A set S of points from the space will be called completely symmetric if it has at

least three elements and fulfills the condition that for every two distinct points A
and B from S, the perpendicular bisector plane of the segment AB is a plane of
symmetry for S. Prove that if a completely symmetric set is finite, then it consists
of the vertices of either a regular polygon, or a regular tetrahedron or a regular
octahedron.

2. Find the least constant C such that for any integer n > 1 the inequality

∑
1≤i<j≤n

xixj(x
2
i + x2j ) ≤ C

 ∑
1≤i≤n

xi

4

holds for all real numbers x1, . . . , xn ≥ 0. Determine the cases of equality.

3. Let n be an even positive integer. Find the minimal number of cells on the n× n
board that must be marked so that any cell (marked or not marked) has a marked
neighboring cell.

4. Find all pairs of positive integers (x, p) such that p is a prime and xp−1 is a divisor
of (p− 1)x + 1.

5. Two circles Ω1 and Ω2 touch internally the circle Ω in M and N and the center of
Ω2 is on Ω1. The common chord of the circles Ω1 and Ω2 intersects Ω in A and B
Lines MA and MB intersects Ω1 in C and D. Prove that Ω2 is tangent to CD.

6. Find all the functions f : R → R such that

f(x− f(y)) = f(f(y)) + xf(y) + f(x)− 1

for all x, y ∈ R.
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§1 Solutions to Day 1
§1.1 IMO 1999/1
Available online at https://aops.com/community/p131833.

Problem statement

A set S of points from the space will be called completely symmetric if it has at
least three elements and fulfills the condition that for every two distinct points A
and B from S, the perpendicular bisector plane of the segment AB is a plane of
symmetry for S. Prove that if a completely symmetric set is finite, then it consists
of the vertices of either a regular polygon, or a regular tetrahedron or a regular
octahedron.

Let G be the centroid of S.

Claim — All points of S lie on a sphere Γ centered at G.

Proof. Each perpendicular bisector plane passes through G. So if A,B ∈ S it follows
GA = GB.

Claim — Consider any plane passing through three or more points of S. The points
of S in the plane form a regular polygon.

Proof. The cross section is a circle because we are intersecting a plane with sphere Γ.
Now if A, B, C are three adjacent points on this circle, by taking the perpendicular
bisector we have AB = BC.

If the points of S all lie in a plane, we are done. Otherwise, the points of S determine
a polyhedron Π inscribed in Γ. All of the faces of Π are evidently regular polygons, of
the same side length s.

Claim — Every face of Π is an equilateral triangle.

Proof. Suppose on the contrary some face A1A2 . . . An has n > 3. Let B be any vertex
adjacent to A1 in Π other than A2 or An. Consider the plane determined by 4A1A3B.
This is supposed to be a regular polygon, but arc A1A3 is longer than arc A1B, and by
construction there are no points inside these arcs. This is a contradiction.

Hence, Π has faces all congruent equilateral triangles. This implies it is a regular polyhe-
dron — either a regular tetrahedron, regular octahedron, or regular icosahedron. We can
check the regular icosahedron fails by taking two antipodal points as our counterexample.
This finishes the problem.
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§1.2 IMO 1999/2
Available online at https://aops.com/community/p131846.

Problem statement

Find the least constant C such that for any integer n > 1 the inequality

∑
1≤i<j≤n

xixj(x
2
i + x2j ) ≤ C

 ∑
1≤i≤n

xi

4

holds for all real numbers x1, . . . , xn ≥ 0. Determine the cases of equality.

Answer: C = 1
8 , with equality when two xi are equal and the remaining xi are equal to

zero.
We present two proofs of the bound.

¶ First solution by smoothing. Fix
∑

xi = 1. The sum on the left-hand side can be
interpreted as

∑n
i=1 x

3
i

∑
j 6=i xj =

∑n
i=1 x

3
i (1− xi), so we may rewrite the inequality as:

Then it becomes ∑
i

(x3i − x4i ) ≤ C.

Claim (Smoothing) — Let f(x) = x3 − x4. If u + v ≤ 3
4 , then f(u) + f(v) ≤

f(0) + f(u+ v).

Proof. Note that

(u3 − u4) + (v3 − v4) ≤ (u+ v)3 − (u+ v)4

⇐⇒ uv(4u2 + 4v2 + 6uv) ≤ 3uv(u+ v)

If u+ v ≤ 3
4 this is obvious as 4u2 + 4v2 + 6uv ≤ 4(u+ v)2.

Observe that if three nonnegative reals have pairwise sums exceeding 3
4 then they have

sum at least 9
8 . Hence we can smooth until n− 2 of the terms are zero. Hence it follows

C = max
a+b=1

(a3 + b3 − a4 − b4)

which is routine computation giving C = 1
8 .

¶ Second solution by AM-GM (Nairit Sarkar). Write

LHS ≤

 ∑
1≤k≤n

x2k

 ∑
1≤i<j≤n

xixj

 =
1

2

 ∑
1≤k≤n

x2k

 ∑
1≤i<j≤n

2xixj


≤ 1

2

(∑
k x

2
k + 2

∑
i<j xixj

2

)2

=
1

8

 ∑
1≤i<n

xi

4

as desired.
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§1.3 IMO 1999/3
Available online at https://aops.com/community/p131873.

Problem statement

Let n be an even positive integer. Find the minimal number of cells on the n× n
board that must be marked so that any cell (marked or not marked) has a marked
neighboring cell.

For every marked cell, consider the marked cell adjacent to it; in this way we have a
domino of two cells. For each domino, its aura consists of all the cells which are adjacent
to a cell of the domino. There are up to eight squares in each aura, but some auras could
be cut off by the boundary of the board, which means that there could be as few as five
squares.

We will prove that 1
2n(n + 2) is the minimum number of auras needed to cover the

board (the auras need not be disjoint).

• A construction is shown on the left below, showing that 1
2n(n+ 2).

• Color the board as shown to the right into “rings”. Every aura takes covers exactly
(!) four blue cells. Since there are 2n(n+2) blue cells, this implies the lower bound.

Note that this proves that a partition into disjoint auras actually always has exactly
1
2n(n+ 2) auras, thus also implying EGMO 2019/2.
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§2 Solutions to Day 2
§2.1 IMO 1999/4
Available online at https://aops.com/community/p131811.

Problem statement

Find all pairs of positive integers (x, p) such that p is a prime and xp−1 is a divisor
of (p− 1)x + 1.

If p = 2 then x ∈ {1, 2}, and if p = 3 then x ∈ {1, 3}, since this is IMO 1990/3. Also,
x = 1 gives a solution for any prime p. We show that there are no other solutions.

Assume x > 1 and let q be smallest prime divisor of x. We have q > 2 since (p−1)x+1
is odd. Then

(p− 1)x ≡ −1 (mod q) =⇒ (p− 1)2x ≡ 1 (mod q)

so the order of p− 1 mod q is even and divides gcd(q − 1, 2x) ≤ 2. This means that

p− 1 ≡ −1 (mod q) =⇒ p = q.

In other words p | x and we get xp−1 | (p − 1)x + 1. By exponent lifting lemma, we
now have

0 < (p− 1)νp(x) ≤ 1 + νp(x).

This forces p = 3, which we already addressed.
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§2.2 IMO 1999/5
Available online at https://aops.com/community/p131838.

Problem statement

Two circles Ω1 and Ω2 touch internally the circle Ω in M and N and the center of
Ω2 is on Ω1. The common chord of the circles Ω1 and Ω2 intersects Ω in A and B
Lines MA and MB intersects Ω1 in C and D. Prove that Ω2 is tangent to CD.

Let P and Q be the centers of Ω1 and Ω2.
Let line MQ meet Ω1 again at W , the homothetic image of Q under Ω1 → Ω.
Meanwhile, let T be the intersection of segment PQ with Ω2, and let L be its homothetic

image on Ω. Since PTQ ⊥ AB, it follows LW is a diameter of Ω. Let O be its center.

O

N

M

P

Q

A B

C DT

W

L

E

Claim — MNTQ is cyclic.

Proof. By Reim: ]TQM = ]LWM = ]LNM = ]TNM .

Let E be the midpoint of AB.

Claim — OEMN is cyclic.

Proof. By radical axis, the lines MM , NN , AEB meet at a point R. Then OEMN is
on the circle with diameter OR.
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Claim — MTE are collinear.

Proof. ]NMT = ]TQN = ]LON = ]NOE = ]NME.

Now consider the homothety mapping 4WAB to 4QCD. It should map E to a point
on line ME which is also on the line through Q perpendicular to AB; that is, to point T .
Hence TCD are collinear, and it’s immediate that T is the desired tangency point.
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§2.3 IMO 1999/6
Available online at https://aops.com/community/p131856.

Problem statement

Find all the functions f : R → R such that

f(x− f(y)) = f(f(y)) + xf(y) + f(x)− 1

for all x, y ∈ R.

The answer is f(x) = −1
2x

2 + 1 which obviously works.
For the other direction, first note that

P (f(y), y) =⇒ 2f(f(y)) + f(y)2 − 1 = f(0).

We introduce the notation c = f(0)−1
2 , and S = img f . Then the above assertion says

f(s) = −1

2
s2 + (c+ 1).

Thus, the given functional equation can be rewritten as

Q(x, s) : f(x− s) = −1

2
s2 + sx+ f(x)− c.

Claim (Main claim) — We can find a function g : R → R such that

f(x− z) = zx+ f(x) + g(z). (♠).

Proof. If z 6= 0, the idea is to fix a nonzero value s0 ∈ S (it exists) and then choose x0
such that −1

2s
2
0 + s0x0 − c = z. Then, Q(x0, s) gives an pair (u, v) with u− v = z.

But now for any x, using Q(x+ v, u) and Q(x,−v) gives

f(x− z)− f(x) = f(x− u+ v)− f(x) = f(x+ v)− f(x) + u(x+ v)− 1

2
u2 + c

= −vx− 1

2
s2 − c+ u(x+ v)− 1

2
u2 + c

= −vx− 1

2
v2 + u(x+ v)− 1

2
u2 = zx+ g(z)

where g(z) = −1
2(u

2 + v2) depends only on z.

Now, let
h(x) :=

1

2
x2 + f(x)− (2c+ 1),

so h(0) = 0.

Claim — The function h is additive.

Proof. We just need to rewrite (♠). Letting x = z in (♠), we find that actually
g(x) = f(0)− x2 − f(x). Using the definition of h now gives

h(x− z) = h(x) + h(z).
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To finish, we need to remember that f , hence h, is known on the image

S = {f(x) | x ∈ R} =

{
h(x)− 1

2
x2 + (2c+ 1) | x ∈ R

}
.

Thus, we derive

h

(
h(x)− 1

2
x2 + (2c+ 1)

)
= −c ∀x ∈ R. (♥)

We can take the following two instances of ♥:

h
(
h(2x)− 2x2 + (2c+ 1)

)
= −c

h
(
2h(x)− x2 + 2(2c+ 1)

)
= −2c.

Now subtracting these and using 2h(x) = h(2x) gives

c = h
(
−x2 − (2c+ 1)

)
.

Together with h additive, this implies readily h is constant. That means c = 0 and the
problem is solved.
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