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8 December 2023

This is a compilation of solutions for the 1997 IMO. Some of the solutions
are my own work, but many are from the official solutions provided by the
organizers (for which they hold any copyrights), and others were found by
users on the Art of Problem Solving forums.

These notes will tend to be a bit more advanced and terse than the “official”
solutions from the organizers. In particular, if a theorem or technique is not
known to beginners but is still considered “standard”, then I often prefer to
use this theory anyways, rather than try to work around or conceal it. For
example, in geometry problems I typically use directed angles without further
comment, rather than awkwardly work around configuration issues. Similarly,
sentences like “let R denote the set of real numbers” are typically omitted
entirely.

Corrections and comments are welcome!
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§0 Problems
1. In the plane there is an infinite chessboard. For any pair of positive integers m

and n, consider a right-angled triangle with vertices at lattice points and whose
legs, of lengths m and n, lie along edges of the squares. Let S1 be the total area
of the black part of the triangle and S2 be the total area of the white part. Let
f(m,n) = |S1 − S2|.

(a) Calculate f(m,n) for all positive integers m and n which are either both even
or both odd.

(b) Prove that f(m,n) ≤ 1
2 max{m,n} for all m and n.

(c) Show that there is no constant C such that f(m,n) < C for all m and n.

2. It is known that ∠BAC is the smallest angle in the triangle ABC. The points B
and C divide the circumcircle of the triangle into two arcs. Let U be an interior
point of the arc between B and C which does not contain A. The perpendicular
bisectors of AB and AC meet the line AU at V and W , respectively. The lines
BV and CW meet at T .
Show that AU = TB + TC.

3. Let x1, x2, . . . , xn be real numbers satisfying the conditions:

|x1 + x2 + · · ·+ xn| = 1

|xi| ≤
n+ 1

2
for i = 1, 2, . . . , n

Show that there exists a permutation y1, y2, . . . , yn of x1, x2, . . . , xn such that

|y1 + 2y2 + · · ·+ nyn| ≤
n+ 1

2
.

4. An n× n matrix whose entries come from the set S = {1, 2, . . . , 2n− 1} is called a
silver matrix if, for each i = 1, 2, . . . , n, the i-th row and the i-th column together
contain all elements of S. Show that:
(a) there is no silver matrix for n = 1997;
(b) silver matrices exist for infinitely many values of n.

5. Find all pairs (a, b) of positive integers satisfying

ab
2
= ba.

6. For each positive integer n, let f(n) denote the number of ways of representing n
as a sum of powers of 2 with nonnegative integer exponents. Representations which
differ only in the ordering of their summands are considered to be the same. For
instance, f(4) = 4, because the number 4 can be represented in the following four
ways: 4; 2 + 2; 2 + 1 + 1; 1 + 1 + 1 + 1.

Prove that for any integer n ≥ 3 we have 2
n2

4 < f(2n) < 2
n2

2 .
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§1 Solutions to Day 1
§1.1 IMO 1997/1
Available online at https://aops.com/community/p356696.

Problem statement

In the plane there is an infinite chessboard. For any pair of positive integers m
and n, consider a right-angled triangle with vertices at lattice points and whose
legs, of lengths m and n, lie along edges of the squares. Let S1 be the total area
of the black part of the triangle and S2 be the total area of the white part. Let
f(m,n) = |S1 − S2|.

(a) Calculate f(m,n) for all positive integers m and n which are either both even
or both odd.

(b) Prove that f(m,n) ≤ 1
2 max{m,n} for all m and n.

(c) Show that there is no constant C such that f(m,n) < C for all m and n.

In general, we say the discrepancy of a region in the plane equals its black area minus
its white area. We allow negative discrepancies, so discrepancy is additive and f(m,n)
equals the absolute value of the discrepancy of a right triangle with legs m and n.

For (a), the answers are 0 and 1/2 respectively. To see this, consider the figure shown
below.

M

A

BC

P Q

Notice that triangles APM and BQM are congruent, and when m ≡ n (mod 2), their
colorings actually coincide. Consequently, the discrepancy of the triangle is exactly equal
to the discrepancy of CPQB, which is an m× n/2 rectangle and hence equal to 0 or 1/2
according to parity.

For (b), note that a triangle with legs m and n, with m even and n odd, can be
dissected into one right triangle with legs m and n− 1 plus a thin triangle of area 1/2
which has height m and base 1. The former region has discrepancy 0 by (a), and the
latter region obviously has discrepancy at most its area of m/2, hence f(m,n) ≤ m/2 as
needed. (An alternative slower approach, which requires a few cases, is to prove that two
adjacent columns have at most discrepancy 1/2.)

For (c), we prove:
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Claim — For each k ≥ 1, we have

f(2k, 2k + 1) =
2k − 1

6
.

Proof. An illustration for k = 2 is shown below, where we use (0, 0), (0, 2k), (2k + 1, 0)
as the three vertices.

WLOG, the upper-left square is black, as above. The 2k small white triangles just below
the diagonal have area sum

1

2
· 1

2k + 1
· 1

2k

[
12 + 22 + · · ·+ (2k)2

]
=

4k + 1

12

The area of the 2k black polygons sums just below the diagonal to

2k∑
i=1

(
1− 1

2
· 1

2k + 1
· 1

2k
· i2

)
= 2k − 4k + 1

12
=

20k − 1

12
.

Finally, in the remaining 1 + 2 + · · ·+ 2k squares, there are k more white squares than
black squares. So, it follows

f(2k, 2k + 1) =

∣∣∣∣−k +
20k − 1

12
− 4k + 1

12

∣∣∣∣ = 2k − 1

6
.
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§1.2 IMO 1997/2
Available online at https://aops.com/community/p356701.

Problem statement

It is known that ∠BAC is the smallest angle in the triangle ABC. The points B
and C divide the circumcircle of the triangle into two arcs. Let U be an interior
point of the arc between B and C which does not contain A. The perpendicular
bisectors of AB and AC meet the line AU at V and W , respectively. The lines BV
and CW meet at T .

Show that AU = TB + TC.

Let BTV meet the circle again at U1, so that AU1UB is an isosceles trapezoid. Define
U2 similarly.

A

B C

U

U1

U2

T

Now from the isosceles trapezoids we get

AU = BU1 = BT + TU1 = BT + TC

as desired.
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§1.3 IMO 1997/3
Available online at https://aops.com/community/p356706.

Problem statement

Let x1, x2, . . . , xn be real numbers satisfying the conditions:

|x1 + x2 + · · ·+ xn| = 1

|xi| ≤
n+ 1

2
for i = 1, 2, . . . , n

Show that there exists a permutation y1, y2, . . . , yn of x1, x2, . . . , xn such that

|y1 + 2y2 + · · ·+ nyn| ≤
n+ 1

2
.

WLOG
∑

xi = 1 (by negating xi) and x1 ≤ x2 ≤ · · · ≤ xn. Notice that

• The largest possible value of the sum in question is

A = x1 + 2x2 + 3x3 + · · ·+ nxn.

while the smallest value is

B = nx1 + (n− 1)x2 + · · ·+ xn.

• Meanwhile, the average value across all permutations is

1 · n+ 1

2
+ 2 · n+ 1

2
+ · · ·+ n · n+ 1

2
=

n+ 1

2
.

Now imagine we transform the sum A to the sum B, one step at a time, by swapping
adjacent elements. Every time we do a swap of two neighboring u < v, the sum decreases
by

(iu+ (i+ 1)v)− (iv + (i+ 1)u) = v − u < n+ 1.

We want to prove we land in the interval

I =

[
−n+ 1

2
,
n+ 1

2

]
at some point during this transformation. But since B ≤ n+1

2 ≤ A (since n+1
2 was the

average) and our step sizes were at most the length of the interval I, this is clear.
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§2 Solutions to Day 2
§2.1 IMO 1997/4
Available online at https://aops.com/community/p611.

Problem statement

An n× n matrix whose entries come from the set S = {1, 2, . . . , 2n− 1} is called a
silver matrix if, for each i = 1, 2, . . . , n, the i-th row and the i-th column together
contain all elements of S. Show that:

(a) there is no silver matrix for n = 1997;

(b) silver matrices exist for infinitely many values of n.

For (a), define a cross to be the union of the ith row and ith column. Every cell of the
matrix not on the diagonal is contained in exactly two crosses, while each cell on the
diagonal is contained in one cross.

On the other hand, if a silver matrix existed for n = 1997, then each element of S is
in all 1997 crosses, so it must appear at least once on the diagonal since 1997 is odd.
However, |S| = 3993 while there are only 1997 diagonal cells. This is a contradiction.

For (b), we construct a silver matrix Me for n = 2e for each e ≥ 1. We write the first
three explicitly for concreteness:

M1 =

[
1 2
3 1

]

M2 =


1 2 4 5
3 1 6 7
7 5 1 2
6 4 3 1



M3 =



1 2 4 5 8 9 11 12
3 1 6 7 10 15 13 14
7 5 1 2 14 12 8 9
6 4 3 1 13 11 10 15
15 9 11 12 1 2 4 5
10 8 13 14 3 1 6 7
14 12 15 9 7 5 1 2
13 11 10 8 6 4 3 1


The construction is described recursively as follows. Let

M ′
e =

[
Me−1 Me−1 + (2e − 1)

Me−1 + (2e − 1) Me−1

]
.

Then to get from M ′
e to Me, replace half of the 2e’s with 2e+1 − 1: in the northeast

quadrant, the even-indexed ones, and in the southwest quadrant, the odd-indexed ones.

Remark. In fact, it turns out silver matrices exist for all even dimensions. A claimed proof
is outlined at https://aops.com/community/p7375020.
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§2.2 IMO 1997/5
Available online at https://aops.com/community/p3845.

Problem statement

Find all pairs (a, b) of positive integers satisfying

ab
2
= ba.

The answer is (1, 1), (16, 2) and (27, 3).
We assume a, b > 1 for convenience. Let T denote the set of non perfect powers other

than 1.

Claim — Every integer greater than 1 is uniquely of the form tn for some t ∈ T ,
n ∈ N.

Proof. Clear.

Let a = sm, b = tn.
sm·(tn)2 = tn·s

m
.

Hence s = t and we have

m · t2n = n · tm =⇒ t2n−m =
n

m
.

Let n = tem and 2 · tem−m = e, or

e+m = 2te ·m.

We resolve this equation by casework

• If e > 0, then 2te ·m > 2e ·m > e+m.

• If e = 0 we have m = n and m = 2m, contradiction.

• If e = −1 we apparently have

2

t
·m = m− 1 =⇒ m =

t

t− 2

so (t,m) = (3, 3) or (t,m) = (4, 2).

• If e = −2 we apparently have

2

t2
·m = m− 2 =⇒ m =

2

1− 2/t2
=

2t2

t2 − 2
.

This gives (t,m) = (2, 2).

• If e ≤ −3 then let k = −e ≥ 3, so the equation is

m− k =
2m

tk
⇐⇒ m =

k · tk

tk − 2
= k +

2k

tk − 2
.

However, for k ≥ 3 and t ≥ 2, we always have 2k ≤ tk − 2, with equality only when
(t, k) = (2, 3); this means m = 4, which is not a new solution.

8

http://web.evanchen.cc
https://aops.com/community/p3845


IMO 1997 Solution Notes web.evanchen.cc, updated 8 December 2023

§2.3 IMO 1997/6
Available online at https://aops.com/community/p356713.

Problem statement

For each positive integer n, let f(n) denote the number of ways of representing n as
a sum of powers of 2 with nonnegative integer exponents. Representations which
differ only in the ordering of their summands are considered to be the same. For
instance, f(4) = 4, because the number 4 can be represented in the following four
ways: 4; 2 + 2; 2 + 1 + 1; 1 + 1 + 1 + 1.

Prove that for any integer n ≥ 3 we have 2
n2

4 < f(2n) < 2
n2

2 .

It’s clear that f is non-decreasing. By sorting by the number of 1’s we used, we have the
equation

f(N) = f

(⌊
N

2

⌋)
+ f

(⌊
N

2

⌋
− 1

)
+ f

(⌊
N

2

⌋
− 2

)
+ · · ·+ f(1) + f(0). (F)

¶ Upper bound. We now prove the upper bound by induction. Indeed, the base case is
trivial and for the inductive step we simply use (F):

f(2n) = f(2n−1) + f(2n−1 − 1) + · · · < 2n−1f(2n−1) < 2n−1 · 2
(n−1)2

2 = 2
n2

2
− 1

2 .

¶ Lower bound. First, we contend that f is convex. We’ll first prove this in the even
case to save ourselves some annoyance:

Claim (f is basically convex) — If 2 | a+ b then we have f(2a) + f(2b) ≥ 2f (a+ b).

Proof. Since f(2k + 1) = f(2k), we will only prove the first equation. Assume WLOG
a ≥ b and use (F) on all three f expressions here; after subtracting repeated terms, the
inequality then rewrites as ∑

(a+b)/2≤x≤a

f(x) ≥
∑

b≤x≤(a+b)/2

f(x).

This is true since there are an equal number of terms on each side and f is nondecreasing.

Claim — For each 1 ≤ k < 2n−1, we have

f(2n−1 − k) + f(k + 1) ≥ 2f(2n−2)

Proof. Use the fact that f(2t+1) = f(2t) for all t and then apply convexity as above.

Now we can carry out the induction:

f(2n) = f(2n−1) + f(2n−1 − 1) + · · · > 2n−1f(2n−2) + f(0) > 2n−12
(n−2)2

4 = 2
n2

4 .
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